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Abstract 

 Biological weapons are one of the top five threats identified by the Department of 

Defense in the United States. While most people commonly associate weapons of mass 

destruction only with atomic bombs, biological agents still have the ability to inflict mass 

casualties and panic. By strategically placing bioweapon detection units, known as BioWatch, in 

various airports, a disease spread could be detected and mitigated before country wide dispersal 

of the disease occurs. Key cities to invest this program are investigated through network analysis 

of flight itineraries with large volumes of traffic.  

In addition to analyzing an airport network, there is also the possibility that an attack 

could still succeed and infect a city. Should this occur, the current Center for Disease Control 

policy is to trace sources of infections and vaccinate people suspected of harboring the disease. 

Kaplan et al., as well as others, have argued for mass vaccination rather than the trace policy. 

Kaplan et al.’s model is extended to consider policies to respond to potential outbreak scenarios.
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ANALYSIS OF THE TREATMENT OF A BIOLOGICAL WEAPON SPREAD 

THROUGH A TRANSPORTATION NETWORK  

 

1. Introduction 

Background 

The United States remains constantly vigilant of weapons of mass destruction 

(WMDs). These include chemical, biological, and nuclear weapons. As stated in the 

National Strategy for Countering Biological Threats, reducing the risk of biological 

weapons by preventing the use or acquisition by State and non-State actors is critical to 

national security (Obama, 2009). Biological agents include pathogens (bacteria and 

viruses), as well as biotoxins from living organisms, used against humans, plants, and or 

animals in an offensive manner (Department of Homeland Security (DHS), 2004). 

Biological weapons are the vector or delivery method used to disperse these agents in 

order to cause death, sickness, damage, and or fear. While germ warfare has been 

practiced for centuries, the United States did not truly invest time and energy into 

biological weapons until the 1950s, with the start of the Cold War (Guillemin, 2005).  

As of the 1970’s, the United States stopped producing biological weapons. 

However, the country has invested time, money, and effort into combating germ warfare. 

This was recently seen with the pursuit of the anthrax attack in 2001. The SARS outbreak 

in China in 2002 (Guillemin, 2005) and the ricin letters of 2013 have also raised 

additional concerns regarding biowarfare (Nuclear Threat Initiative, 2013). Currently, 

biological detection equipment (such as Biowatch and polymerase chain reaction (PCR) 
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based sensors) has been developed and deployed in major cities to minimize the impact 

of a disease outbreak (Zimmerman & Zimmerman, 2003). 

One area that is particularly susceptible to a biological attack is the airline 

industry. Although a known major biological attack has not thus far been conducted on 

an airport or a flight, it is obvious with the September 11
th

 terrorist attack that should an 

attack occur, in addition to any tragic loss of life, the airline industry will suffer 

significant financial losses. Even if a small attack occurred, where a dozen people were 

infected, the public fear of biological weapons could still result in panic and substantial 

financial losses as evidenced with the anthrax attack executed through the US postal 

service (Guillemin, 2005).  In 2001, the U.S. government spent $15 billion in loans to 

sustain the air line industry (Makinen, 2002). In excess of $142 million was spent on 

decontamination with the anthrax attack (Shane, 2002). Aside from an attack at an 

airport, where people are in a hurry to travel to various places and potentially spreading 

an infection, another concern is the airplane itself. With recycled air flowing through the 

aircraft, it is possible that a terrorist attack could be launched through a single flight or a 

series of flights. The detrimental effect of such an attack would be the wide dispersal of 

the contagion and difficulty in tracking the origin of an outbreak. 

Aside from monitoring airports, another concern is what to do in the event of a 

disease outbreak. While the Center for Disease Control (CDC) does have plans for 

containing outbreaks, they primarily involve a trace vaccination program; where patient 

contacts are used to “trace” the transmission. Although others have argued for a mass 

vaccination program, in the event of a disease outbreak, this may not be an ideal strategy 

due to the logistics, vaccine availability, and limited protection from future outbreaks. A 
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compromise of the two strategies could involve pre-vaccination of a portion of the 

population. 

Overall, this research has potential value to national security. According to the 

National Strategy for Countering Biological Threats, the release of a malicious contagion 

could “risk the lives of hundreds of thousands of people” (Obama, 2009, p. 1). 

Furthermore, the U.S. government acknowledges that an attack could “overwhelm our 

public health capabilities” and that “the economic cost could exceed one trillion dollars.” 

Finally, even though “it is feasible to mitigate the impact of even a large-scale biological 

attack upon a city’s population,” the potential to spread a contagion to multiple 

population centers could exacerbate the costs and logistics needed to protect the public 

(Obama, 2009, p. 1). The loss of life could be catastrophic. The 1918 Spanish Influenza 

epidemic killed at least 50 million people worldwide (Taubenberger & Morens, 2011), in 

a time when contagions were not as mobile. While the economic impact was somewhat 

hidden in the costs of a world war, such a loss of life would have a massive and costly 

psychological and economic impact. 

Problem Statement 

The problem investigated in the study has two key thrusts. First, how might an 

attack use the airlines to spread an infection through the U.S.? Which cities might be 

most vulnerable and susceptible to be used for such attacks? Insights might suggest 

where more intense vigilance might be necessary. The second thrust is what might be the 

impact of such an attack on a city? What would be the estimated death rate when various 

pathogen characteristics are used, coupled with various public policies? 
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Problem Approach 

By studying flight paths with the most amount of traffic, key airports can be 

determined in order to detect and mitigate a mass infection. These airports serve as ideal 

locations for disease spread nationally and should be equipped with biodetection units if 

they are not already equipped. They also should be given heightened attention if an attack 

is anticipated or progresses. Using data from the Bureau of Transportation statistics, a 

network was created and used in this study to model worst case scenarios (in this case, 

flight itineraries) for disease spread. While a simulated run using random connections can 

be acquired, this model focuses on passenger traffic volume to select the most disruptive 

flight path to compromise. This is done by optimizing flight itineraries and cascading 

networks. The aim of modeling these biological attacks is to identify key airports with the 

potential to create outbreaks in multiple cities. Furthermore, by equipping these airports 

with biodetection units, the US can strengthen its ability to detect and mitigate a 

biological attack.  

If detection fails and an outbreak still occurs, a disease spread model is used to 

determine the outcomes of a biological attack in areas that could place the military and or 

large cities at risk. By analyzing the spread, an alternative solution to either the trace or 

mass vaccination programs can be acquired. This could potentially save lives, reduce 

economic costs, and mitigate the impact of a bioattack (Obama, 2012). In order to study 

the containment of an outbreak, modifications are made to an existing model based on a 

set of differential equations used to study disease spread (Kaplan, Craft, & Wein, 2002). 

This model is also parameterized to allow other diseases with similar transmission 

vectors to be considered.  Finally, various parameters are adjusted to identify key traits 



5 

 

that could be adjusted for a worst-case scenario attack. Using these equations, several 

scenarios are run with various levels of pre-vaccination involved. By comparing the 

number of people infected, waiting in line for vaccinations, and dead, different mitigation 

policies can be analyzed, including mass, trace, and pre-vaccination programs. 

Assumptions 

 This thesis assumes that any city that has been announced to have the BioWatch 

program also means their respective airport(s) utilize the program as well.  In addition, 

this thesis assumes that if a BioWatch unit is equipped and the disease is in the registry, it 

is able to detect the weaponized disease within an hour. While this may not be realistic, 

the logistics of the BioWatch program are classified. The simulated itineraries also 

assume that a terrorist infected with a disease will infect a significant portion of the flight 

and that their goal is mass infection, without detection while the attack is being 

conducted. Furthermore, it is assumed that the carrier will survive the entire flight 

without succumbing to their infection or raising any alarms that would mitigate the 

attack. In addition, flights will operate on time and only one hour layovers occur. Since 

many business travelers seek flight options with this constraint, it is considered a 

reasonable simplification for the model. Even if these assumptions are considered 

optimistic on how the air traffic system functions, they provide a base to impute the 

impact of a flight system based attack. 

Research Scope 

The network analysis using flight itineraries have some limitations. While 

analysis primarily focuses on the volume of traffic between airports, it could be used to 
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estimate the potential number of people infected on a flight. This model does not select 

flights going to airports based on the airport’s size, net flight traffic, or number of 

connections to other airports. This is done to help simplify the model and avoid 

prioritizing different measures. In addition, due to the numerous assumptions that would 

be needed, the model does not consider the distribution of an infection through various 

airport terminals. 

With regards to modeling the CDC’s response to a disease outbreak, the model in 

this research allows for parameters to be changed in order to better simulate various 

disease outbreaks. Although the equations could be modified for diseases spread by other 

vectors (such as insects), this model strictly focuses on diseases spread from person to 

person. It can estimate the number of people infected, dead, and in line for vaccinations 

in a closed population (i.e. a city). It does not determine the effects of a constantly 

changing population, nor can it account for the spread of an infection to other cities. The 

model does not predict the logistics needed to get vaccines to an area, the efforts needed 

to decontaminate buildings, nor does it determine human behavior during an outbreak.  

Overview 

Although the U.S. has taken measures to mitigate the effects of a biological 

attack, additional precautions can be made. With this in mind, the purpose of the network 

models are to simulate worst case scenarios in order to determine which airports should 

be equipped with biodetection equipment. By identifying key airports needed for 

detection, a potential infection can be stopped before highly trafficked routes are 

compromised. As for the CDC response, the purpose of the model is to approximate the 
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likely outcome of a disease outbreak and find effective levels of pre-vaccination to 

mitigate the spread. By using both these models, the effects of a biological attack using 

known agents can be detected quickly and mitigated, while minimizing the potential 

spread of an infection. 

The remainder of the thesis is organized as follows. Chapter 2 focuses on 

literature pertaining to biological weapons, BioWatch, and previous studies conducted. 

The methodology in Chapter 3 explains the procedures used to build the new models. It 

also explains how the models are executed to get results needed for analysis. The Results 

and Analysis, Chapter 4, presents the outcomes of the network analysis and disease 

spread models. It also involves a few applications to demonstrate the value of the models 

and analysis conducted. Finally, Chapter 5 reviews the conclusions of the study and 

discusses the results and areas for future research. 
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2. Literature Review 

Introduction 

 This literature review, while not all inclusive, reviews the key aspects needed for 

the modeling of contagions. In order to minimize the spread of an infection, several items 

must be addressed. First and foremost are the characteristics of a biological agent and 

how they spread. Next, preventative measures and previously conducted studies are 

reviewed. Finally, information on networks and Markov chains is presented to provide 

the necessary background for understanding the foundation of the models used. 

Characteristics of a Biological Agent 

 There are several unique features to biological agents, which distinguish them 

from chemical and nuclear weapons. The first is the time delay. In a chemical or nuclear 

attack, once the attack occurs, the effects are rapidly obvious. With a biological attack, 

however, a person can be infected with a virus, bacteria, or toxin and not realize it for 

days after the attack. The second unique feature is the potential to spread a biological 

agent. Although many biological agents, especially toxins, cannot be spread from person 

to person, there is a subset of diseases, such as plague and smallpox, which are easily 

transmissible. This means that after an attack, which exposes members of a population, 

the agent can still spread and affect an entire population. This is significantly different 

from chemical and nuclear attacks, which can only harm those within a certain radius (or 

downwind) of the attack. Another feature is the fact that harmful pathogens occur 

naturally, making many of them easily accessible. So long as a terrorist has a source for a 

disease, a simple offensive biological program could be inexpensive (Burke, 2010). This 
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makes biological weapons an equalizer, where non-state actors and third world countries 

can conduct effective attacks on first world nations (Owens, 2009). 

 There are several characteristics that are unique to biological agents, which help 

classify them. One of these characteristics is the incubation period. The incubation period 

is how long it takes the disease to reproduce within the human body in order for its host 

to be infectious and able to pass the disease. This trait is important since it helps 

determine how fast a disease spreads. If a disease requires an incubation period of 4 days 

as opposed to 10, the disease will be able to spread faster. While a shorter incubation 

period may be appealing due to its faster spread rate, a longer incubation period means a 

biological weapon attack can be harder to initially detect and trace its transmission. 

An additional important feature is how it spreads. This is important since not all 

biological agents can spread from person to person; some diseases can only spread by 

insect (such as malaria) or inhalation of spores (such as anthrax). Furthermore, for those 

biological agents that can spread from person to person, the method in which the disease 

spreads can differ. For example, some diseases can only be spread by fluids, such as 

Ebola, while others can be spread while talking to an infected person within several feet, 

such as smallpox (DHS, 2004). 

Finally, a key factor is the type of biological agent and treatment available. Not all 

biological agents have approved vaccines available. Furthermore, treatments for bacteria, 

viruses, and toxins differ amongst each other (Fong & Alibek, 2005). 
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Vaccines 

In order to reduce the susceptibility of the population, the CDC is working on 

various vaccines and treatments against harmful pathogens. Although a vaccine for every 

known biological agent does not exist, more than a dozen new drugs are under 

development and testing (DHS, 2004). Aside from having a vaccine available, there are 

other concerns that create a problem when mass vaccination is considered. For example, 

not every vaccine is guaranteed to be effective or without potential side effects. Although 

the efficacy rates for vaccines are relatively high, there is still a chance a person can 

become ill or even die from a vaccination. In addition, certain people cannot receive 

vaccines. This includes people who could have an allergic reaction to a vaccine 

depending on the materials used to produce it, as well as those too young, old, or sick to 

receive a vaccine. People who have a disease or are undergoing treatments that weaken or 

compromise their immune system, as well as pregnant women, could be prohibited a 

vaccine as well for safety reasons (CDC, 2007). 

Aside from creating and delivering a vaccine, there are additional issues, such as 

mass production and delivery. Although vaccines can protect the public, unless the CDC 

has enough vaccines accessible, an outbreak may not be effectively suppressed. This is 

especially concerning if a particular vaccine takes time to produce. Another issue 

includes storage of the vaccine and shelf life. Timing is an additional concern. Not all 

vaccines are useful once a person is infected. If the body takes time to build up immunity 

or if the biological agent has progressed far enough, a vaccine may be useless for some 

victims during a biological attack. 
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One major concern in preventing the spread of diseases is the public’s reaction to 

vaccines. While most people see the value and purpose of vaccines, there have been 

issues of skepticism from the public. Most of the skepticism stems from religion, rare 

complications, and parent concerns over a refuted study suggesting vaccines can cause 

autism. In addition, diseases that have a low probability of occurring may not justify 

vaccination. For example, according to the Citizens for Healthcare Freedom, 1 in 1,750 

suffer an “adverse reaction” from the DTaP vaccine, “while the chance of dying from 

pertussis each year is one in several million” (Zimmerman & Zimmerman, 2003, p. 22). 

On the other hand, some organizations may be wary of diseases, other groups like the 

American Council on Science and Health argue the vaccines are extremely effective. 

Furthermore, through aggressive vaccine programs, diseases such as smallpox have been 

eradicated worldwide while the number of victims of polio and measles have been 

significantly reduced (Zimmerman & Zimmerman, 2003). The military also uses vaccines 

in the unlikely event of a biological weapon attack, such as the release of smallpox. 

Diseases of Concern 

 Several diseases of great concern are smallpox, Ebola, Marburg, Lassa, and 

plague. Smallpox is of great concern because it is an airborne, easily transmissible virus 

that can be spread from person-person just by breathing. There is a vaccine for smallpox 

available, but there are several issues that may be of concern. Most important is the fact 

the vaccine is effective for only 3-5 years. Although additional vaccines may be taken to 

increase the length of protection, immunity can only be extended. Another concern is 

how potent a vaccine is after a long period of storage. Currently the US has enough 
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smallpox vaccines (about three hundred million) stockpiled to inoculate the entire public 

in the event of an emergency. However, this stockpile may be useless in 20 years (since 

the vaccine involves injecting a live vaccinia virus into a person) (CDC, 2007) and the 

current stockpile already includes 60 million vaccines created prior to 2001 (Zimmerman 

& Zimmerman, 2003). There is also the possibility that the U.S. doesn’t possess a tested 

vaccine for various strains of a disease. Currently, a vaccine from Europe (that has not 

been approved by the CDC yet) is being implemented to contain a specific strain of 

meningitis at Princeton University and University of California at Santa Barbara 

(Schnirring, 2014).  

 Viral hemorrhagic fevers, such as Ebola, Marburg, and Lassa are a great concern 

due to their potential to spread as well. Although these viruses require more contact with 

people (for example Ebola and Marburg must be spread via fluids), they can still create a 

serious problem for human health. A key problem with these diseases are the lack of 

effective vaccines. Finally, plague is a bacteria that can easily spread from person to 

person. If we consider the pneumonic form of plague, it is very similar to smallpox in its 

ability to spread from people just by talking. Unfortunately, the US does not have an 

updated vaccine for plague (the previously used one was discontinued in 1999) (DHS, 

2004). 

 Although there are other biological agents, including, but not limited to, 

botulism, tularemia, anthrax, cholera, ricin, and encephalitis, these agents cannot spread 

from person to person. Therefore, should a person be infected with ricin, contact will not 

put others in harm’s way (DHS, 2004). In addition, there are a handful of biological 

agents that have a low lethality rate but still present a threat. For example, a number of 



13 

 

encephalitis or arenaviruses will not kill a large number of people but will make them ill 

for a period of time. In the military, several pathogens that may create this problem 

include rotavirus, hepatitis A virus, PRD 1 bacteriophage, micrococcus luteus, and 

serratia rubidea, as identified in Air Force Manual 10-2503 (2011). 

 Although there exist lists of diseases that could be used as a biological agents, the 

list will never be complete given the ability to genetically engineer and crossbreed 

various pathogens. For example, with regards to bacteria, certain genes (such as antibiotic 

resistance) can be passed from one bacteria organism to another (Young, 2013).There is 

also the possibility of biohacking, where people can modify various strains of bacteria 

and viruses using lab equipment and various websites for information (Wikswo, 

Hummel, & Quaranta, 2014). It has also been reported by scientists such as Ken Abilek 

(former bioweaponeer for the USSR) that Russia has developed various weaponized 

strains of biological agents, as well as chimera agents (involving the combination of more 

than one biological agent). Unfortunately, until these unidentified strains are used in an 

attack, the U.S. will never be fully prepared to counter their effects. If detection 

equipment does not have a pathogen’s “signature,” it is even much less likely to detect 

the pathogen. In addition, while intentional bioattacks should be of concern, the 

possibility of a naturally occurring outbreak must be considered as well (Zimmerman & 

Zimmerman, 2003). 

Spanish Flu  

 One example of a devastating disease spread was the Influenza outbreak of 1918, 

otherwise known as the “Spanish Flu.” This incident was estimated to have infected a 
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third of the world’s population (about 500 million at the time) and killed between 50-100 

million people. The case fatality rate was at least 2.5%, which may sound small until 

compared to <0.1% case fatality rate of other influenza outbreaks. Additionally, half of 

the fatalities were people between the ages of 20-40. Should the disease return, the CDC 

estimates that an outbreak would kill at least 100,000 people across the globe 

(Taubenberger & Morens, 2011). 

 These characteristics are critical since a disease outbreak could easily impact the 

military. With the Influenza outbreak, there was a clear effect on the military. Based on 

the War Department’s estimates, at least 26% of the Army (over one million men) at the 

time was infected with the Spanish Flu. Worse, 30,000 troops died prior to arriving in 

France to aid ongoing conflicts in World War I. Within the U.S. Navy, at least 35% 

(about 106,000 out of 600,000) were hospitalized and about 5,000 died (Department of 

Public Health, 2010).  

Another major concern was the various rates of infection. While some areas, such 

as Camp Lewis, WA only had a 10% sickness rate, other locations such as Camp 

Beauregard, LA had a 63% sickness rate. Due to these high rates of infections, it was not 

uncommon for troops to go AWOL (absent without leave) in order to avoid getting sick 

once their base was compromised. Unfortunately, there are limitations on this data. While 

it is assumed the records from various base hospitals in 1918 are accurate, it is possible 

that the data is imperfect. In addition, only those who reported sick and received 

treatment were included in the data. Troops who went AWOL (absent without leave), did 

not report the sickness (or did not receive permission to get medical treatment), or 

reported sick while on leave were not included in the estimates. In addition, the data is 
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provided based on the 1918 records. Regardless, the Navy and Army both implemented 

quarantine measures, including face masks and isolation. These measures were 

ineffective due to the inability to properly quarantine bases during a time of war 

(Department of Public Health, 2010). 

 Clearly, diseases have a large potential to devastate a population. While 

quarantine measures can be set in place, it is still possible for a disease spread, especially 

in areas not ideal for quarantine (such as a military base in an active theater). If diseases 

can be detected, however, their spread may be mitigated. 

BioWatch  

 Currently, there are various methods being used to detect for a biological attack. 

One of the most heavily relied on monitoring systems is BioWatch. Modern BioWatch 

equipment essentially relies on an air filtration system that runs 24 hours a day, seven 

days a week and is inspected for pathogens. The frequency of the inspections are 

classified and most likely vary depending on the volume of pedestrian/passenger traffic. 

Unfortunately, there are a few problems with this approach. The first problem is that a 

sample of the pathogen is needed in order to positively identify it when compared to an 

air sample. Therefore, should a hybrid pathogen be released in public, BioWatch may not 

detect it. The other problem is the Biowatch program has had issues of false positives, or 

falsely detecting a pathogen. From an emergency preparedness standpoint, it is better to 

have a false positive than to not report a positive sample. Confidence in the system’s 

output, however, becomes less trusted if it is constantly setting off false alarms. A false 

alarm (or true alarm) may also cause a panic. The cost in money, time, and interruption of 
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traffic in order to close off a city, subway, or airport could create could a serious 

problems (Hodson, 2012). 

Currently, BioWatch is known to be implemented in at least 31 cities, including 

Philadelphia, New York City, Washington, DC, San Diego, Boston, Chicago, San 

Francisco, Atlanta, St. Louis, Houston, and Los Angeles. The location of Biowatch 

equipment is not known to the public in order to prevent tampering with the system (Shea 

& Lister, 2003). While the BioWatch program is under the Department of Homeland 

Security’s authority, its use could help the military. 

General Services Administration 

While the military has transport aircraft available, most personnel travel using 

airports close to their base. In order to save the military money, the U.S. government 

(specifically the General Services Administration (GSA)) has set up a program known as 

the Airline City Pair Program. This program aims to reduce the cost of travelling for 

members of the DoD between various cities located near bases. If a flight between two 

cities is highly travelled and included in the Airline City Pair Program, a biological attack 

could have widespread impact across multiple military installations. This would 

especially be problematic for cities located near multiple military installations. Another 

concern is if an airport has a number of flights that are used in the Airline City Pair 

Program. A large number of flights, especially if highly trafficked, could increase the 

potential spread of a biological weapon. In addition, since people often have to wait an 

hour or more prior to boarding a plane (whether it’s the first flight or a connecting flight 

in an itinerary), the potential to spread a disease in an airport increases (GSA, 2013). 
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Based on the numerous opportunities to spread a disease, it is worth studying how 

a disease can spread. This can range from modeling the actual spread of disease amongst 

a population to looking for ideal areas for an infection to start. Luckily, various 

independent researchers and the CDC have conducted additional analysis to minimize the 

impact of a biological attack. 

Prior Research and Analysis: Vaccine Analysis 

 Numerous studies have been done with regards to the spread of diseases and how 

to combat them. Kaplan, Craft, and Wein, argue in favor of fully vaccinating the 

population in the event of a smallpox attack (Kaplan et al., 2002). In their paper, they use 

Markov chains and supporting differential equations in order to determine the number of 

people infected, in a vaccination queue, and dead from an attack.  

To respond to this attack, two methods are considered. The first is a trace 

vaccination program, which the CDC currently utilizes. In the trace vaccination program, 

those with symptoms are reported and a list is generated that involves tracing all the 

people that have had contact with known infected individuals. As people are added to the 

list, they are tracked, vaccinated, and questioned about additional contacts. The second 

method, which Kaplan et al. (2002) supports, is to vaccinate the entire population once an 

outbreak is determined (CDC, 2007). 

 To illustrate Kaplan et al.’s (2002) results, Figure 1 is included from their paper 
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Figure 1. Kaplan et al. Model Results (Kaplan et al., 2002, p. 10936) 

 

Figure 1 displays two charts. Graph 1A displays the results of the trace vaccination 

program. The noticeable features on this graph are a peak number infected of about 2,500 

people in the queue around day 75 and by day 100, the number of infected is estimated 

around 130,000. In addition, the time scale on the graph extends beyond 150 days to 

contain the outbreak. If the results of graph 1B are studied, it is clear that the number of 

people in the queue is extremely high since the program calls for vaccinating everyone in 
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the city population of ten million. However, the peak infection number is about 1,700 by 

day 12 and containment is achieved within two months based on the graph. 

With regards to the calculated outcomes of these two strategies for handling an 

outbreak, Kaplan et al. (2002) clearly demonstrates that a mass vaccination plan would 

significantly decrease the number of deaths (by about 90%). In the mass vaccination 

program, Kaplan et al.’s (2002) model and equations calculate that in a span of 10 days, 

the entire city population (of ten million people) can be vaccinated with an outcome of 

1,830 people infected and 560 deaths. This plan would require 690 isolation units to 

quarantine those who are febrile and infectious (Kaplan et al., 2002).  

In the trace vaccination program, however, the estimated number of infected is 

367,000 with 110,000 deaths. The trace plan would also require 59,000 isolation units. 

However, one caveat that should be mentioned is the condition Kaplan et al. (2002) 

provide. The trace vaccination program estimates vaccinators issuing 50 vaccines a day 

while in the mass vaccination program, vaccinators issue 200 vaccines a day (based the 

mass vaccination of New York City in 1947 due to an outbreak of smallpox). Another 

noticeable assumption is that people are vaccinated throughout the day. This is probably 

done in order to simplify the model. However, it is possible that vaccines could be 

administered 24 hours a day in order to trace and contain a deadly outbreak like smallpox 

quickly (Kaplan et al., 2002). 

If one considers Kaplan et al.’s (2002) work, although mass vaccination should 

effectively contain an outbreak, it is assuming the current stockpiles of vaccines are 

readily accessible and still effective. If one tried to vaccinate the entire public today, this 
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protection would be virtually ineffective in five years unless people applied for additional 

vaccines. 

Another study was conducted on the effects of quarantine and vaccines. Meltzer, 

Damon, LeDuc, and Millar used Markov chains based on recorded European outbreaks of 

smallpox to determine an appropriate response to dealing with a smallpox outbreak 

(2001). In their research, they considered the effects of using only a vaccination policy, a 

quarantine policy, and a combination of vaccinations and quarantine. Based on their 

results, they determined that a combined approach of vaccines and quarantine would be 

the best option in terms of minimizing deaths. 

Prior Research and Analysis: Network Analysis 

 Aside from vaccination programs, a number of studies regarding airport 

vulnerabilities to disease spread have also been conducted. One study is by Conti, Cao, 

and Thomas, uses data from the U.S. Bureau of Transportation Statistics to determine the 

most critical airports to attack in order to disrupt the air travel network (2013). Based on 

the network created, the authors identified the top five airports utilizing various scores, 

such as the number of cities an airport is connected to and the volume of traffic.  

In Table 1, one can see that metrics in network analysis, such as closeness and 

betweeness, were implemented (using data from the Bureau of Transportation Statistics) 

(Conti et al., 2013). These metrics are on a scale of zero to one, where a higher score is 

preferred. For closeness, the score is based an airport’s connection to all other airports in 

a network. A higher score indicates that an airport has better access to other airports and 

can connect to more locations in one flight. A lower score, on the other hand, implies that 
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an airport is not in an accessible location and must use more than one flight to get to other 

airports in the network. The betweeness score measures how frequently an airport is used 

to connect to other airports. The score is based on the percentage of time an airport is 

used in a shortest distance problem between two other airports). An airport with a high 

score indicates that it is in a key location and must be used to get from one airport to a 

different airport quickly (Conti et al., 2013). 

Table 1. Example of Conti et al.'s Metrics Used (Conti et al., 2013, p. 3) 

 

Once these metrics (plus several scores created by the authors that rely on the volume of 

traffic and number of connecting flights) were combined, they determined the most 

critical airports (shown in Table 2). 
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Table 2. Conti et al.'s Results (Conti et al., 2013, p. 4) 

 

Another study done by Nicolaides, Juanes, Gonzalez, and Cueto-Felguerso from 

MIT’s Department of Civil and Environmental Engineering used networks to determine 

the most influential airports for disease spread by considering location and connectivity 

(2012). In their study, the busiest airports were not necessarily the most critical for 

disease spread. Honolulu International Airport, for example, was ranked as the third most 

critical airport for disease spread. This is primarily due to the large number of flights that 

rely on Honolulu in order to transport passengers from Southeast Asia and other Pacific 

nations to the U.S. or vice versa. While it was not studied in the report, this could be 

detrimental to US forces going overseas; especially considering the use of civilian 

airports in Asia (Nicolaides et al., 2012). 

Additional Analysis and Concerns 

One other concern regarding disease spread is “Airport malaria.” Airport malaria 

occurs when a person contracts malaria in an area not known to house the disease. This is 

possible when a mosquito with the disease is transported via international flight to a 

foreign area. Once transported to a new habitat (where malaria is a not a typical concern), 

the mosquito is able to infect others and create a serious concern for health officials. 
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While some basic probabilities and models have been developed, the primary concern is 

the spread of an insect vector, such as a mosquito, through international airports. 

Although this study only focuses on diseases spread by people, it is possible for a disease 

vector like insects to spread from one area to another (American Society of Tropical 

Medicine and Hygiene, 2008; Isaacson, 1989). 

 Although various mathematical models can provide an estimation of worst case 

outcomes of an attack would be, there are a number of limitations to these models. For 

example, disease spread does not stay constant regardless of the person infected. 

Depending on a variety of factors, including overall health and how social a person is, 

two people may spread a pathogen at completely different rates. Generally, the time it 

takes a pathogen to incubate and proceed through it stages, as well as the number of 

people one infected person comes into contact with while contagious, can vary 

drastically. This forces models to rely on either averages or probability distributions, 

which can only give a general idea of how a disease will spread.  

One can run into other issues when modeling response measures as well. For 

example, although a vaccination and quarantine policy may be effective in limiting the 

spread of a disease, it is possible that the public may not cooperate or act in a calm, 

rational manner once an announcement is made about a biological attack. Furthermore, 

most models assume a closed population (in other words, no people can enter or leave the 

city, causing further casualties and spread vectors). If the disease has been spread through 

a transportation system, this could definitely be problematic when the incubation period 

ends. 
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Network Analysis 

 As implied in Conti et al. (2013), as well as the research done by Nicolaides et al. 

(2012), there are methods to evaluate key airports using network analysis. Essentially, a 

network consists of a collection of nodes and arcs, where the nodes are central points and 

the arcs connect various nodes. For an airport network, the airports serve as the nodes and 

the flights that connect the airports act as arcs. These networks can be structured as 

matrices, where each airport is assigned a row and column.  

 In addition to building a network, additional information can be contained in the 

network. For example, the total number of passengers or the average number of 

passengers travelling between locations can be included within the arcs. Rates of 

infection can be treated as a flow, where branches with higher traffic may be more 

valuable to network (Ahuja, Magnanti, & Orlin, 1993). 

By focusing on connecting flights, less focus is given to the airports themselves, 

as done in prior analyses. In this version of the network analysis, branches are assigned a 

flow (such as number of passengers) and the objective is to maximize the flow by 

travelling through certain flights (Hamill, Deckro, Wiley, & Renfro, 2007). Furthermore, 

with the ability of diseases such as smallpox to spread easily to people within six feet of 

the infected person, combined with the recycled air circulating through an aircraft, 

focusing on flights (as opposed to airports) is an ideal strategy for a terrorist attack (Fong 

& Alibek, 2005). 
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Cascade Networks 

Another model that is considered is the network cascade model. In this model, 

various nodes are connected to one another. However, should one node be infected, it 

does not necessarily mean all other nodes the infected node is connected to may be 

compromised. In the cascade model, a certain threshold is specified before a change in 

the node is indicated. In terms of a social network, one person may not change their 

behavior until a certain number of friends have influenced them by changing their 

behavior (Kleinberg, 2007). For an airport, the same cascade model could be applied, 

where an airport is compromised once a specified number or percentage of infected 

passengers have arrived from various compromised airports to a susceptible one.  

Due to the incubation periods of diseases, such a scenario is less likely. For a 

disease such as smallpox, once a person is infected, it takes about 10 days for the virus to 

incubate before the virus can spread to other people (Fong & Alibek, 2005).  For diseases 

such as Ebola (and even less deadly ones such as norovirus), which have shorter 

incubation periods of one to two days, the cascade network does not seem like a possible 

option for modeling an outbreak. This is especially due to the fact that Ebola can only be 

transmitted via fluids and a terrorist coughing up blood on passengers is likely to raise 

some alarms immediately. Although it is not addressed in this study, diseases with a short 

incubation period could potentially be effective on cruise line networks (due to the time 

lag between ports).  

A more meaningful application of a cascade network involves the study of 

diseases passed by touch, which does not require humans as a major vector. This would 

include the diseases mentioned in Air Force Manual 10-2503 that serve more as an 
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inconvenience than a lethal attack (2011). Although such an attack could weaken key 

units at critical times if properly planned and coordinated. Ideally, the disease would 

spread by people touching surfaces such as seats, handrails, doorknobs, and so forth. 

Once those surfaces are touched by others, the disease can continue to spread. While it 

would not severely compromise a person and potentially kill them, such as smallpox, a 

disease that can survive and replicate outside a living host could spread rapidly. This type 

of spread could be modeled effectively using a cascade network.  In addition, this type of 

disease would also be effective against troops or garrisons in a daily unit transport (Fong 

& Alibek, 2005). 

Markov Chains 

 Aside from network analysis, Markov chains are also critical for this study. In the 

Kaplan et al. (2002) model, differential equations are used to quantify the rate of change 

from one state to another. For example, the author provides equations for the rate of 

change from a susceptible period to an infected period. This change from one state to 

another, which provides the basic layout of the model, is known as a Markov chain. 

Although Kaplan et al. (2002) provided the equations for the rate of change from one 

state to another in the model, the states are treated as part of a Markov model. Using this 

set, percentages can be used to determine the fraction of a population that succumbs to a 

disease and those that recover (Ross, 2007). 

 While additional Markov chains are not the focus of this research, there has been 

a substantial amount of effort placed into using this method for diseases analysis. The 

most basic and well known models are the susceptible-infected-susceptible (SIS) and 
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susceptible-infected-recovered (SIR) models. In these models, the population is broken 

up into states. Those who are infected are in the “I” state while those in the “S” state are 

susceptible. Additional states can also be added as needed. For example, a recovery state, 

known as the “R” state, is used in the SIR model. In these Markov chains, as time 

progresses, people shift from one state to another and estimates of infection numbers can 

be determined. However, these simplified models have a limited use and can be 

complicated as more states are incorporated into the method (Dodds & Watts, 2005) 

(Allen & Burgin, 2000). Essentially, the Kaplan et al. (2002) model is a complex version 

of an SIR model with additional states for death and vaccination queues. 

Design and Analysis of Experiments 

 Design and analysis of experiments (DOE) is a statistical method which 

determines significant variables and their effects on a desired output. This involves 

modifying either one variable at a time or a combination of variables and determining the 

impact of the change. While a model can be re-run multiple times to determine the 

sensitivity of a response to a specific set of parameters, DOE allows for key variables to 

be identified. Furthermore, using statistical analysis, linear regression can be used to 

determine the range of outcomes and key variables in the model. In order for linear 

regression to work, it is assumed that the distribution of the errors is normal, the errors 

are independent, and constant variance is observed (in other words, there is no trend in 

the errors). Since the data points are provided from a model with different settings, the 

errors are independent. The normality and constant variance assumptions depend on the 

results of the linear regression model (Montgomery, 2013). 
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Conclusions 

Clearly, biological agents are a threat to national security. Furthermore, diseases 

that can spread from person-to-person contact are of extreme interest due to their 

potential to spread amongst a population, especially in heavily trafficked areas. While 

vaccines and the BioWatch program are in effect, the US is still susceptible to attacks. 

Although several studies have been conducted on mitigating these attacks, more analysis 

can still be performed. This includes considering alternate options for dealing with an 

outbreak as in the Kaplan et al. (2002) model and shifting the focus from airports to 

flights in a network analysis of the airline industry. The methodology incorporates this 

information and constructs the necessary models needed to identify key airports and 

analyze disease spread. 
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3. Methodology 

 Introduction 

 This chapter presents the methodology used to execute the analysis presented in 

this thesis. Building on the literature review, there are methods to evaluate disease 

outbreaks using differential equations and network analysis. In order to perform these 

evaluations, a network must be constructed to model the flights and traffic between 

various airports in the US (as shown in Figure 2 and Figure 3). This model is then used to 

suggest potential effective itineraries to execute the attack. In addition, the Kaplan et al. 

(2002) model was extended to evaluate alternate approaches to their disease spread 

model. 

 

Figure 2. Airports in US (Department of Transportation, 2012) 
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Reviewing Figure 2, it is clear that modeling an airport network within the US 

and its territories is a complex task. Certain airports are more frequently used than others 

and serve as key nodes in a network. To further illustrate this, Figure 3 highlights the 

actual airport network the MIT study produced (Nicolaides et al., 2012).  In this figure, 

key airports are indicated with full circles around the airport. While the study by 

Nicolaides et al. (2012) included flights to other countries, this thesis only focuses on 

flights within the United States and its territories (to include Guam, Puerto Rico, and the 

Virgin Islands).  

 

Figure 3. Visual of Airport Network in US (Nicolaides et al., 2012) 
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Figure 4. Problem Framework 

 The thesis covers two approaches for dealing with a biological weapon attack. As 

shown in Figure 4. Phase I determines critical airports for detection using network 

analysis of flight itineraries and cascade networks. Should an outbreak still occur, Phase 

II is used to analyze an alternative treatment for containing an outbreak to mass or trace 

vaccination. 

Phase I 

 The goal of Phase I is to determine which airports should be equipped with 

BioWatch (if they are not known to have the detection equipment). This is done using 

three different network scenarios shown in Figure 5. The first two approaches involve 
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flight optimization and the third approach involves cascade networks. All network 

analyses rely on the data from the U.S. Bureau of Transportation Statistics. 

 

 

Figure 5. Phase I framework 

Data 

In order to analyze the spread of a disease through a transportation network, a 

similar study to Conti et al. was conducted (2013). Using the same information source as 

Conti et al., a network is formed using the data from the Research and Innovative 

Technology Administration (from the Bureau of Transportation Statistics (2013)).  

The data that was imported included the number of passengers, the number of 

flights, the distance between airports, the airline, the origin airport, the destination 

airport, the distance group, the aircraft group, type, and configuration.  The distance 



33 

 

group refers to grouping by flight the distance in increments of 500 miles. Thus, if the 

distance between two airports was 0-500 miles, it was in the first group, if the distance 

between the airports of 501-1000 miles, it was in the second group, and so on. The 

distance group was also used as a proxy for time. Flights in distance group 1 are assumed 

to take one hour to complete, flights in distance group 2 are assumed to take about two 

hours to complete, and so on. Although weather and traffic congestion can impact the 

time it takes to complete a flight and rounding can affect the total flight time, using the 

distance group to approximate flight time simplifies the data. Furthermore, the data for 

various flights between two airports supports this assumption. The aircraft group and type 

refer to the plane used for the flight. For example, group would classify the plane based 

on the number and type of engines used (such as a 2 engine jet) while type would 

specifically refer to the aircraft (such as a Boeing 717-200).  

Due to file size, the data used in this study consisted of all flights only in 

December 2012. Although data consisting of flights throughout the year would give a 

more accurate representation of traffic, December typically tends to be one of the busier 

months due to holiday travels. In addition, the public tends to let its guard down during 

the holidays, making it an ideal time for a bioterrorist attack (Bureau of Transportation 

Statistics, 2013). 

In order to help consolidate the data and produce more consistent results, a 

portion of the observations were omitted. For example, all observations where the 

passenger number was zero were eliminated. In addition all flights not marked as 

“passenger configuration” were eliminated as well. Planes not so designated meant the 

plane was not designed to carry people. While these entries could be useful for biological 
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attack through the postal service (similar to the anthrax attack of 2001), terrorists infected 

with a disease will obviously infect more people (and thus create more panic) by utilizing 

passenger flights available to the public. Finally, any flights listed with a zero for time or 

distance travelled (indicating the plane did not leave the airport probably due to 

mechanical issues or weather), were eliminated as well. 

Once the data was acquired, each airport was treated as a node and the flight 

connecting two airports were treated as arcs. By organizing the data into a matrix, a 

network can be analyzed. The number of airports considered in this research was 700. 

Notional Construction of a Network with Passenger Flow 

 In order to understand how the matrix and network were set up, this example 

illustrates the approach. Using Table 3, a mock flight scenario is constructed. In this case, 

the number of people travelling from City A to City B is equal to the number of people 

travelling from City B to City A. For example, the highlighted number indicates that 300 

people travelled from City A to City C in a month by Figure 6. While only symmetric 

passenger traffic were used in this example (A→B = B→A), asymmetric traffic are 

incorporated in this research (A→B≠B→A). 

Table 3. Example of an Airport Matrix (using volume of traffic) per month 

 

City A City B City C City D City E 

City A 0 800 300 500 0 

City B 800 0 600 0 0 

City C 300 600 0 0 0 

City D 500 0 0 0 80 

City E 0 0 0 80 0 
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Using Table 3, the network in Figure 6 can be formed. Likewise, if Figure 6 was 

initially provided, Table 3 could be created.  

  

Figure 6. Example of an Airport Network 

In order to measure the volume, one could look at the average number of 

passengers per flight or the net traffic of passengers. While using the net volume of traffic 

between airports would not provide an exact estimation of the number of passengers, the 

benefit is that the model focuses on highly travelled routes. This is critical since airplanes 

are not thoroughly cleaned between flights. This provides a chance for additional 

infections after the infected passenger has left. There is also the possibility of creating 

widespread fear and mass disruptions by infecting highly travelled routes. Consider the 

example in Figure 6, attacking a flight going from City B to City A would be beneficial 

from a terrorist’s point of view since it is a frequently travelled route. Thus, attacking the 

flight may yield a large number of victims. However, while an attack on the flight from 
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City B to City A is appealing due to the large volume of traffic on that leg, a flight 

itinerary from City B to City C and then to City A may be more effective since a 

bioattack would compromise half the network nodes and disrupts a larger volume of 

passengers. Regardless, if City A is exposed and closed down, one can see how easily the 

network is compromised. 

Aside from the benefits of looking at network traffic, there are also some 

problems to consider with the average number of passengers per flight. One problem is 

that a flight that has a high number of passengers per flight may not be travelled often 

due to limited service. The trouble with this is a route not travelled frequently will not 

create mass disruption in an airline network attack. For example, if one looks at the 

Figure 6, selecting the flight with the maximum number of passengers per flight would 

immediately dictate that an attack be conducted on the flight between City D and City E. 

While this attack could instill fear, an attack on a flight going to City A would likely 

cause a larger disruption in the network. As one can see, with the frequent flights and 

large volumes of passengers going through City A, an attack on a plane going from City 

D to A would potentially do more damage to the network. Furthermore, flights that are 

offered daily are more appealing since they can be booked at an ideal time and offer more 

opportunities to conduct an attack. If a terrorist with smallpox who is infected is trying to 

maximize their flight time, they will likely purchases tickets for flights that are easily 

available (and most likely fly daily). In any event, the model can be adjusted to consider 

either averages or specific flight data if available. 
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Flight Optimization 

In order to find the flight path with the largest volume of passenger traffic, 

itineraries starting at each airport were generated. Mathematically, the construction of 

flight itineraries would be as follows: 

                                     (1) 

 

where X.. is the volume of traffic between two airports, a is the starting location, b is the 

first stop, c is the second stop, d is the third stop, and e is the fourth stop. The constraints 

would be the following (Tij is the time need to from airport i to airport j); 

                        (2) 

                                                           (3) 

                                                    (4) 

                                      (5) 

                                      (6) 

                                       (7) 

                                                    (8) 

                                                   (9) 

                                                            (10) 

 

Equation 2 prevents the same airport from being used more than once. Equation 3 

restrains itineraries to 18 hours and equation 4 is used to ensure all flights are connected 

(if no time is needed to get from airport c to d, for example, this implies c and d are not 

connected). Equations 5 through 10 are constraints used to generate effective itineraries 
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without raising suspicion (assuming the flight on the left side exists). Using Equations 5-

7, for example, the 2
nd

 stop airport cannot be right next to the starting point. For example, 

if a flight path consists of Colorado Springs, CO, Las Vegas, NV, and Denver, CO, the 

path should be rejected. While this itinerary could be possible, a flight from Colorado 

Springs to Denver takes an hour, which is significantly shorter than flying to Las Vegas 

and then to Denver. If a flight path consisted of New York City, Atlanta, and Miami, the 

path is acceptable since the time it takes to get from New York to Miami (plus three 

hours) exceeds the time needed to get from New York to Atlanta and Atlanta to Miami 

(with a one hour layover included). With regards to Equations 8-10, for example, the time 

needed to get from a starting location to the third or fourth stop directly (plus four hours 

to account for a longer itinerary) must exceed the time needed to travel the suggested 

route. Similar to Equations 5-7, this constraint prevents suspicious flight itineraries from 

being selected. This condition, as well as the other conditions mentioned, was determined 

through testing of alternative formulations. Essentially, the model tries to prevent 

unrealistic and or questionable flight itineraries from being selected. This allows the 

terrorist to avoid suspicion. 

Preprocess 

In order to conduct a network analysis, several matrices were created. Using the 

December 2012 data from the whole airport network, a matrix was created documenting 

the total volume of passenger traffic between airports during December 2012. The first 

column and row indicate specific airports (labeled using coded numbers (for example, 

Denver International is labeled 11292)). Next, any flight originating from Airport A to 
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Airport B would have the total volume of traffic for December 2012 indicated in the 

matrix. Specifically, the value would be placed in the row corresponding to Airport A’s 

code and the column corresponding with Airport B’s code. This was done for the total 

volume of traffic during December 2012 for the entire network as well as for each airline.  

Based on the structure of the optimization function, a starting location with four 

airports is selected to create a four flight itinerary. Extra rows and columns were added to 

serve as terminating null airports. By including terminating null airports, this allowed a 

three flight itinerary with a fourth dummy flight to a terminating null airport to be 

selected as a flight path with a large volume of passenger traffic. This allows flight plans 

with fewer stops but more traffic to be included in the top itineraries (so long as the 

constraints are met).  

These terminating null airports had several unique properties to ensure they could 

produce accurate results. First, any airport could connect to the terminating null airports. 

However, terminating null airports can only connect to other terminating null airports. 

This ensures that an itinerary must have connected flights. An itinerary generated by the 

model cannot have a passenger travel only three legs from City A, to B, then C. Second, 

there is no value for traffic flying into or out of terminating null airports and there is no 

layover time. By not having any traffic, terminating null airports are not likely to be 

selected when flight itineraries search for highly trafficked routes. In addition, by not 

including a layover time for the terminating null airports, the total flight time of an 

itinerary with a terminating null airport does not include additional hours flying to a null 

airport. 
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Since the distance group is used as a proxy for time, a distance group matrix was 

created. For this matrix, all entries with a value larger than zero (indicating a flight 

existed) had a one added to them. This essentially combines the layover time (assuming it 

is one hour) and the travel time to get to the next airport into one value. Even if a one 

flight itinerary is generated, the one hour layover included in the time estimate to get to 

the next airport corresponds to the minimum one hour needed to check in before a flight. 

This was needed to provide an estimate for travel time with each additional flight. 

 In order to construct flight itineraries the matrices focusing on network passenger 

volume and distance groups were used. However, for the sake of time, the Matlab code 

(provided in Appendix C) had to be structured for determining optimized flights in an 

effective manner.  

 

Figure 7. Second Example of an Airport Network 
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One method to find the optimal flight path is to generate every combination of 

flights possible. For example, using Figure 7, combinations such as A-B-C-D-E and A-B-

C-E-D could be observed. However, since City E is only connected to City D, a flight 

path of A-B-C-E-D would not be possible. With the data from the U.S. Bureau of 

Transportation Statistics (2013), the model evaluates flight paths with 700 airports 

available. Therefore, in order to evaluate feasible flight paths efficiently, only feasible 

flights are generated. In the notional example above, if one started at City E, flight path 

E-D-A-B-C and E-D-A-C-B are evaluated. Since the sum of total passengers is 1780 

using path E-D-A-B-C and 1280 using path E-D-A-C-B, the first path would be preferred 

in an attack starting from City E. In addition, terminating null airports exist so that an 

optimal flight itinerary using less than four flights can be selected.  

If it is assumed that using the network in Figure 7, a terrorist has 10 hours to 

travel (not including layover time), he has two choices when launching an attack from 

City E. He can use flight path E-D-A-B or E-D-A-C-B based on a 10 hour time 

constraint. Since path E-D-A-B has a sum of 1380 total passengers and path E-D-A-C-B 

has a sum of 1280 total passengers, the first path is selected. Since the itinerary 

optimizing routine utilizes four flights, a fourth flight to a null terminating airport is used 

to fill the requirement without adding noise to the sum of the total number of passengers. 

In order to score every feasible flight path efficiently, Figure 8 illustrates the 

method used. 
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Figure 8. Visual Reference for Evaluating All Feasible Flights Efficiently 

Based on the illustrative example, the itinerary optimizing program executes with 

the first airport code provided in the total passenger matrix (in this case, node A). Using 

this airport, an adjoining list of potential connecting flights would be generated, with the 

airports serving as a first stop (nodes B and G). Once this list was generated, the first 

airport serving as a first stop would be selected (node B) and another list of potential 

connecting flights would be generated (with these airports (nodes C and F) serving as a 

second stop). Similarly, the first airport serving as a second stop would be selected (node 

C) and another list of potential connecting flights would be generated (with these airports 

(nodes D and E) serving as the third stop). Finally, the first airport serving as the third 

stop would be selected (node D) and another list of potential connecting flights would be 

generated (with these airports serving as a final destination). The model then evaluates a 



43 

 

score based on the total volume of passenger traffic flowing from the starting point to the 

first stop, the first stop to the second stop, the second stop to the third stop, and the third 

stop to the fourth stop.  

Referring again to Figure 8, itinerary 1 would be evaluated first. Next, the second 

airport on the fourth stop list would be evaluated (in this case, itinerary 2), and then the 

next one until all the fourth stop destinations were enumerated and evaluated. The 

program then looks at the first airport in the starting location (node A), the first airport in 

the first stop list (node B), the first airport in the second stop list (node C), the second 

airport in the third stop list (node E), and the first airport in the fourth stop list (in this 

case, itinerary 4). This continues until all possible airport itineraries starting from the first 

starting location (node A) were evaluated based on the total volume of traffic. Once the 

optimized itinerary (based on the total volume of passengers) has been found starting at 

the first airport, it is recorded. The program then proceeds to the second airport acting as 

a starting location and in a similar fashion evaluates all possible flight itineraries. 

Essentially, for each starting location, every combination of flight itineraries is evaluated 

and the path with the most traffic is recorded. With the inclusion of terminating null 

airports, a flight path with a large volume of traffic can be included if the path relies on 

less than four flights to real airports. 

Constraints 

In order to produce useful results, the itinerary optimizing routine limits the 

number of flights travelled. Ideally, a terrorist may want to infect as many people as 

possible before getting caught or succumbing to a disease. Therefore, instead of focusing 
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on one flight, multiple flights were considered. This included booking a maximum of 

four flights during the day. While most airlines try to get passengers from one airport to 

another in the least amount of flights, it is possible to go onto websites such as 

Kayak.com and Expedia.com and book itineraries that rely on more than two flights. This 

is especially noticeable with less costly routing, flights booked last minute (where 

common, shorter routes are fully booked), flights booked to airports with limited 

connections, and airlines that capitalize on various hubs.  

As an illustrative example booking a flight on Kayak.com on 3 Feb 2014 with the 

itinerary presented in Figure 9: 
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Figure 9. Four Flight Itinerary Example 1 (using Kayak.com) for Illustrative 

Purposes 

The example clearly illustrates that if a terrorist were to purchase a ticket for the 

following day, they could book an itinerary with four flights within a 12 hour travel time. 

Specifically, the flight plan in Figure 9 would start with a trip from Seattle, WA to 

Phoenix, AZ, then fly from Phoenix, AZ to Austin, TX, followed by a flight leg from 

Austin, TX to Charlotte, NC, and concluding with a flight from Charlotte, NC to Miami, 



46 

 

FL. By relying on major hubs and the frequency of flights between these hubs, it is very 

likely that a terrorist cell could take advantage of flights such as these. Likewise, a 

similar route utilizing different hubs (due to different airlines) is possible as well; 

 

Figure 10. Four Flight Itinerary Example 2 (using Kayak.com) for Illustrative 

Purposes 

$1383 11 united SEA 5:30a .. MIA 10:38p 14h 08m 3 stops (SFO ... ) 

Only 1 seat Jeft at this price 

Untted 

Oetsils 

S1383 

Fares 

Coach ! <9 
Skywest DBA United Express operates flight 5268. 

Expressjet Aii'Wies DBA United Express operates flight 4620. 

+ Depart Tue, Feb 4 SEA to M IA- 3 stops 

11 United- Flight 526& 

Operated by SKywest DBA United Express 

Take .off 

Landing 

Tue 5:30a 

Tue 7:44a 

SEA Seattle, WA 

SFO San Francisco, CA 

14h osm 

2h 14m 

Coach Fare code: BAOFY 1 Canadair Regional Jet (Regional Jet) 2h 14m 11 seats remain 

.--+ Same plane 

11 United- Flight 526& 

Take .off 

Landing 

Tue 10:55a 

Tue 1:58p 

SFO San Francisco, CA 

SFO San Francisco, CA 

TUS Tucson, AZ 

Coach Canadair Regional Jet (Regional Jet) 12h 03m 

.--+ Change planes TUS Tucson, AZ 

11 United- Flight 4620 

Operated by Expressjet Airlines DBA United Express 

Take.off Tue 2:23p TUS Tucson, AZ 

Landing Tue 5:43p IAH Houston, TX 

3h 11m 

2h 03m 

Oh 25m 

2h 20m 

Coach Fare code: OAOFN 1 Embraer RJ135 I RJ14{1/ RJ145 (Regional Jet) 2h 20m 1 4 seals 
remain 

.--+ Change planes IAH Houston, TX 1h 36m 

11 United- Flight 1704 2h 19m 

Take .off Tue 7:19p IAH Houston, TX 

Landing Tue 10:38p MIA Miami, FL 

Coach Fare code: QAOFN 1 Boeing 737-900 (Narrow-body Jel) 12h 19m 4 seats remain 

Save to My Trips Pin Email resuH Print Close 
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In the example in Figure 10, the flight path would include a flight from Seattle, WA to 

San Francisco, CA, followed by a flight from San Francisco, CA to Tucson, a flight from 

AZ, Tucson, AZ to Houston, TX, and finally a flight from Houston, TX to Miami, FL. 

Due to the utilization of different airports by various airlines, network analysis was 

conducted on the U.S. air traffic network (regardless of airline) and on the networks of 

four large airlines. 

Based on the examples shown, the model searches for the itinerary (of up to four 

flights) with the largest total volume of traffic (for December 2012) within an 18 hour 

window (corresponding to the constraint in Equation 3). This 18 hour window includes 

the flight time for all flights and an estimated one hour layover at each airport visited. 

The 18 hour window was selected due to many airports opening usually around 5-6AM 

and closing around 11PM -12AM. In addition, for a disease such as smallpox, the 

terrorist should be able to conduct their attack so long as they do not raise any suspicions 

from TSA or the public. Aside from the terrorist’s behavior, physical symptoms such as 

pox could give them away. Therefore, assuming an infectious terrorist can survive a day 

of travel before showing signs or succumbing to the disease reinforces the idea of the 18 

hour window selected. Although time zones would change the length of potential flight 

time (for example, someone flying from the east coast to the west coast would have a 

larger time window for flying within a day), for demonstration purposes the model does 

not account for time zone changes. This does not create a significant impact on the results 

generated by the model since a flight from west to east (such as a flight from Hawaii to 

California) could be done overnight on a redeye flight, allowing the 18 hour window to 

start at night and end during the day. If the flight itinerary is within the continental US, as 



48 

 

shown in Figure 9 and Figure 10, a flight itinerary from the west coast to the east coast 

can be done within an 18 hour travel day. Furthermore, the 18 hour window is with 

consideration to surviving a disease. Regardless what time of day it is, once the infectious 

period starts, a person carrying a disease is assumed by the model to have a least a 

window of a day to infect others before showing noticeable symptoms or succumbing to 

the infection. 

Additional Considerations 

While most of the focus was placed in the flight itinerary for a terrorist exposing 

the number of people within the entire airport network, several other factors were 

considered and evaluated. One area that is studied is the use of specific airlines. Referring 

back to Figure 9 and Figure 10, it is clear that both itineraries are offered by specific 

airlines. Specific airlines are likely to utilize certain hubs, which leads to different 

effective itineraries for each airline. In order to evaluate certain airlines, new matrices, 

using flights specifically serviced by an identified airline, were created and run through 

the flight itinerary selection code.  

Another area that was studied was if known BioWatch locations are taken into 

consideration. Recall (Chapter 2) that the BioWatch program is currently implemented in 

31 major cities, 11 of which have been publicly identified. In order to increase casualties 

and ensure a widespread infection, a terrorist may try to avoid cities with BioWatch. 

Therefore, analysis was conducted on flight itineraries that specifically avoid airports 

known to have BioWatch detection units. This was done by changing all values for 

distance groups going into or out of an airport on the BioWatch list to zero (essentially 
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disconnecting known BioWatch equipped airports from the rest of the airport network). It 

should be noted that if the goal of an attack was simply to shut down the air traffic system 

and spread panic, a terrorist could choose itineraries that focused on BioWatch cities. 

While this alternative was not modeled, it would be easy to adjust the model to consider 

it. 

Finally, international arrivals are a concern due to their potential for a global wide 

exposure in a malicious attack. In addition, those travelling from abroad may 

unknowingly bring a disease into the U.S. that the U.S. public may not be prepared. To 

investigate this type of attack, it was assumed a malicious attack is launched from abroad 

and an infected terrorist can withstand two additional flights before succumbing to the 

biological agent, analysis was conducted utilizing a two flight itinerary. For this 

alternative approach, only the top 10 international US airports were considered. Again, it 

is clear that if intelligence about a specific anticipated attack were known, the scenario 

and analysis could be adjusted to investigate the attack. 

Cascade Network  

Another network structure, cascade networks, were utilized for determining key 

airports for detection. In this scenario, a disease starts in one location and is passed on to 

other locations. The goal of this strategy is to infect as many airports as possible quickly. 

The Matlab code used for this thesis is provided in Appendix C. 

Cascade Network Set Up 

In order to use a cascade network properly, a threshold must be specified for an 

airport to be considered infected. Therefore, the data used in this approach incorporates 
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the average number of passengers per flight (based on the December 2012 data from the 

U.S. Bureau of Transportation Statistics). Similar to the flight itinerary approach, 

matrices were constructed documenting the average number of passengers per flight 

travelling between two airports. The distance group matrix was also used as a proxy for 

time.  

In order to track the airports in a cascade network, three states were identified: 

susceptible, infected, and compromised. Next, three matrices were formed based on those 

states. For the susceptible airports, let matrix S be an n x 2 matrix. In this matrix the first 

column lists the airport code and the second column denotes if the airport belongs to the 

respective matrix. For example, an airport that is still susceptible will have a one next to 

its code in the susceptible column, while a compromised or infected airport will have a 

zero in the second column of the susceptible matrix.  

An infected matrix used to keep track of an airport that has been infected by at 

least a few passengers, but not enough to compromise the airport. For the infected state, 

let matrix I be an n x 4 matrix. The first two columns indicate the airport code and 

whether the airport belongs to this group (similar to the susceptible and compromise 

matrices). The third column is used to keep track of the number of infected passengers 

that have entered the airport and the fourth column is used to track the percentage of 

incoming traffic infected. Essentially, the infected matrix is used to track airports that are 

not compromised by the first infected flight, but eventually become compromised as 

additional infected flights are received by the airport.  

For the compromised airports, let matrix C be an n x 3 matrix. Similar to the 

susceptible matrix, the first column contains each airport’s code. The second column 
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(initially set to zero) marks the time an airport becomes compromised. The third column 

estimates the number of infected passengers arriving at the compromised airport. An 

airport is considered compromised if more than 100 passengers or more than 10% of the 

airport’s total traffic reach a specified airport. The 100 passenger count is selected for 

illustrative purposes and is used for determining whether large airports are compromised. 

The 10% threshold is used for smaller airports in remote areas that do not experience 

large traffic volume. While these thresholds are notional in this illustration, these can be 

changed in the model to reflect an actual pathogen. 

Cascade Execution 

After the three matrices are set up, the cascade network model originating at the 

first airport and the clock starts. Any flights leaving this airport infect the connecting 

airports. Once enough time has passed for flights originating at the first airport to have 

landed and disembarked passengers, all connecting airports are removed from the 

susceptible matrix. If a connecting airport is compromised, it is moved from the 

susceptible matrix to the compromised matrix and any flights leaving that airport infect 

connecting airports. If a connecting airport is only infected, it is moved from the 

susceptible matrix to the infected matrix. As additional flights from other compromised 

airports land in the infected airport, the infected airport will eventually become 

compromised. This cycle repeats until a specified time limit has been reached. Actual 

rates can be adjusted to represent a specific pathogen used in an attack.  

Once the cascade network has reached its specified time limit, the clock and 

matrices are reset. Another scenario will begin starting at the second airport on the list 
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until a specified time limit has been reached. Although this takes some time, the program 

will model a cascade network with every airport starting as a source for a disease spread.  

To illustrate how the cascade network operates, consider the notional example 

using Figure 11 through Figure 15. In this notional example, it is assumed that all flights 

in this example take one hour to travel and 100 infected passengers are needed to 

compromise an airport. In Figure 11, the infection starts at City A. 

 

Figure 11. Cascade Example 

During the first hour, all flights leave City A. Based on Figure 12 and the 

numbers used for this example, City B, D, and F are expected to be infected. 
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Figure 12. Cascade Example (During First Hour) 

During the second hour, passengers disembark and City B, D, and F are 

compromised. Since City C and E did not have 100 or more passengers arrive from City 

A, they are only considered infected (as shown in Figure 13). 

 

Figure 13. Cascade Example (During Second Hour) 

After a one hour layover, additional flights take off during the third hour, as 

shown in Figure 14. 
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Figure 14. Cascade Example (During Third Hour) 

Since City C and E have received more than 100 infected passengers by the fourth 

hour, they are considered compromised as shown in Figure 15. 

 

Figure 15. Cascade Example (During Fourth Hour) 

The cascade network used in conjunction with the December 2012 data from the 

U.S. Bureau of Transportation Statistics operates in a similar method. 
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Measures 

In order to measure which airports would be effective in creating itineraries for 

conducting a massive disease attack, at least one measure had to be used. While the 

model could have looked at the minimum amount of time needed to infect all airports or 

the maximum number of airports infected after a specified number of hours, these 

measures give equal weight to small and large airports. Therefore, the cities known to 

have the BioWatch program were used as indicators of a quick spread. Since these 

airports are considered critical in the network, it makes sense to stage an attack that can 

infect these airports in the shortest amount of time possible. Although this would mean 

the attack may be detected sooner, this is only possible if the BioWatch units are looking 

for less lethal diseases. In addition, a shorter time needed to infect critical airports 

probably means that the starting airport location has more connecting flights to major 

hubs than a remotely located airport. This could also mean the potential to infect more 

passengers and expose more damage on the airport network. 

Although the network can identify which airports promote a shorter time needed 

to infect cities listed under the BioWatch program, a second discriminant is needed to 

evaluate these airports. The total number of infected passengers travelling from 

compromised airports are summed and recorded for each starting location. This means 

that the key starting airports can be differentiated with time acting as the first criteria and 

the infected passenger number as a discriminate (between starting airports with the same 

infection time).  

Based on this model formulation, it is obvious that there is no consideration for 

multiple flight itineraries for infected passengers. In other words, if a passenger reaches 
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an airport that becomes infected but is not compromised, any susceptible airports that the 

infected passenger travels to will not be infected in the model. This is due to the way an 

airport infection is treated. In this instance, an airport must be compromised, or have 

enough of a pathogen travelling amongst passengers, that it is fair to consider all 

connecting airports infected. If only a few infected passengers reached an airport, the 

assumption that all connecting flights leaving the airport would infect their connecting 

airport would not be logical (unless we are dealing with a small airport and the 

percentage of traffic threshold is met). It is possible that the disease could be spread, but 

the trace amounts in an airport with only a few infected passengers would need to be 

modeled differently than in the demonstration. For example, if a very virulent infection 

were used, different tolerances other than (100/10%), could be used to model the 

compromise of an airport network.  

Phase II 

 In this part of a notional attack, the concern is if a biological weapon is unleashed 

and the BioWatch system fails to detect an outbreak in time. The goal of this section is to 

examine an alternate policy to deal with the contagion. Using a disease spread model, it is 

possible to test the impacts of mass vaccination, trace vaccination, and pre-vaccination. 

Kaplan et al. (2002) Model  

 In order to study the spread of a disease, the model by Kaplan et al. (2002) is 

used. As discussed in Chapter 2, this model is used to study the outcomes of a mass and 

trace vaccination program. As a result of reproducing this model, an alternative strategy 

to combat a smallpox outbreak was studied. By determining the spread of a disease over 
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time and using the estimated number of infected and casualties as measures, different 

containment policies can be analyzed. 

 In Kaplan et al.’s (2002) paper, the authors mention using exponential functions 

in their model. Although these functions were not provided, the rate of change for each 

state is given. Using the same starting conditions as the authors, the rate of change for 

each state of the model was calculated and added to the starting condition in incremental 

time periods. This allows the model to be discretized and successfully reproduce results 

of the Kaplan et al. (2002) model. 

In addition, the model was parameterized in the thesis. This allows a user to 

change the parameters in order to model other diseases using the same Markov structure. 

Therefore, should one need to model a different disease outbreak (that can spread 

amongst humans), the impact can be predicted. Parameterizing the model also allowed 

for sensitivity analysis to be conducted. By changing various parameters such as the 

length of the infection and incubation periods, the outcomes of a more (or less) virulent 

outbreak can be studied. This is useful should a modified smallpox outbreak occur due to 

a mutation in the virus (the Matlab code used is provided in Appendix B). 

Kaplan Model Reconstruction 

 As mentioned earlier, one model that has been used to study disease spread and 

containment is the Kaplan et al. (2002) model (referred to hereafter as the Kaplan model). 

It is structured as a continuous Markov chain with the layout presented in Figure 16. This 

section summarizes the Kaplan model and follows directly from the authors’ article. 
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Figure 16. Kaplan Model Markov Chain 

(Kaplan, Craft, & Wein, 2003, p. 6) 

 In this model, ‘S’ refers to those susceptible to the disease, ‘Z’ refers to those 

immune to the disease, and ‘D’ refers to those who die from smallpox. The ‘I’ and ‘Q’ 

stages refer to those with the disease and those in line for a vaccination, respectively. The 

subscript refers to which stage of the disease people fall under, while the superscript 

indicates if a person is vaccinated (using a one) or not (using a zero) (Kaplan et al., 2002, 

p. 10939). 

Kaplan’s model starts with several parameters shown in Table 4.  
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Table 4. Kaplan's Variables for Smallpox Model 

Parameter Description Value for smallpox 

β Infection rate 10
-7

person
-1 

day
-1

 

c Names generated per index 50 

p Fraction of infectees named by index 0.5 

N Population size 10
7
 

r1 Disease stage 1 rate (asymptomatic, 

noninfectious, and vaccine-sensitive) 

(3 days)
-1

 

r2 Disease stage 2 rate (asymptomatic, 

noninfectious, and vaccine-insensitive) 

(8 days)
-1

 

r3 Disease stage 3 rate (asymptomatic and 

infectious) 

(3 days)
-1

 

r4 Disease stage 4 rate (symptomatic and 

isolated) 

(12 days)
-1

 

n Number of vaccinators 5000 

µ Service rate 50/day 

h Fraction febrile in stage 3 0.9 

α Quarantine rate (5 days)
-1

 

ν0 Vaccine efficacy, stage 0 0.975 

ν1 Vaccine efficacy, stage 1 0.975 

δ Smallpox death rate 0.3 

f Vaccination fatality rate 10
-6

 

  
     Initial number infected 10

3
 

τ Delay 5 days 

(Kaplan et al., 2002, p. 10936) 

 

The first parameter, β, is the infection rate. This is the portion of susceptible 

people infected by those in stage 3 of small pox. Next is the names generated per index, 

or the number of people an infected person has had contact with. The parameter ‘p’ is the 

portion of potentially infected people that are named, found, and vaccinated. ‘N’ refers to 

the population size and ‘ri’ is rate one is in a disease stage i (which is found by dividing 

one over the average number of days in that stage). Although there are four stages, as 

noted in the chart, a person at stage three is infectious and does not show symptoms. The 

service rate, µ, refers to the number of vaccines provided in a day. For those vaccinated, a 

portion noted using ‘h’ are febrile and isolated for α
-1

 days. The vaccine efficacy rates 
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refer to the likelihood of the vaccine is able to protect a person from a future exposure to 

smallpox (provided the person is either susceptible to the disease or only in stage 1). The 

vaccination fatality rate refers to those who could die from the vaccine. The initial 

number infected is the number of people who start at stage 1 in the beginning of an 

outbreak and the delay is how long the disease is able to spread before it is identified and 

vaccines are issued. All parameters and values are provided by Kaplan et al. (2002) in 

their paper. Although he does offer a second service rate in the case for mass vaccination 

(200/day), that number was not be used in this study (Kaplan et al., 2002, p. 10936). 

Kaplan et al. (2002) provided the rates of change in their model. In the following 

equations the variables are: I, refers to the infected stage; S, refers to the population; and 

Q, refers to queuing stages. Furthermore, the superscript zero indicates someone who is 

untraced and not vaccinated, while the superscript one indicates someone who is traced 

and vaccinated. The subscripts refer to the disease stage for those infected and or in a 

queue (Kaplan et al., 2002, p. 10939). 

The first equation is the number of people who are infectious and thus able to 

spread the disease. This is found by summing all those in stage 3 of the disease, 

regardless if the person is vaccinated (Kaplan et al., 2002, p. 10938). 

     
       

               (11) 

  

Next the untraced differential equations are provided. This is key to the beginning 

of the model where people are not being vaccinated until an outbreak is determined. In 

this case, one can see the number of susceptible people is negative and constantly 

declining based on the number of infected people. When one looks at the rates for the 
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additional stages of the disease, the primary factor that determines the rate of progression 

is the length of time in the specified stage. In addition, each stage has people “enter” from 

the previous stage and exit to the next stage (Kaplan et al., 2002, p. 10939).  
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In Equation 12, the number of people in the susceptible stage is always declining. 

This is due to the interaction of susceptible and infected people in the      
  term. The 

          
  

 
     term determines the number of names identified as infected by each 

person through the trace program. In Equation 13, those who were susceptible but made 

contact with an infected person move into the 1
st
 stage of the disease. Those progressing 

to the second stage of the disease or the trace program are removed from the first stage 

state. Similarly, stage 2 and 3 of the disease are dealt with in Equation 14 and 15. Those 

entering the stage reflect an increase number of people in the disease stage, while those 

traced or progressing to the next phase leave the state. Finally, Equation 16 deals with the 

last stage of the disease (which inevitably leads to death) (Kaplan et al., 2002, p. 10939). 

Once a disease outbreak is detected, the queuing states are included. For these 

differential equations, one key piece is the number of people vaccinated. Once people are 
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vaccinated or they progress to the next stage of the disease, they leave the current queue 

they are in.  
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In Equation 17, the initial queue is filled with people from the trace program. 

However, people in line who are infected (the       term) and vaccinated people (the 

         
 

 
   term) leave the initial queue. The remaining queues progress similar to the 

disease stages. The first stage queue is increased by people who are infected while in the 

queue, but decreased by vaccinations or progression onto the next phase of the disease. 

The second and third stage queue proceed in a similar fashion (Kaplan et al., 2002, p. 

10939). 

The quarantine state is used for those in stage 3 of the disease who are febrile and 

quarantined for 5 days. 

  

  
                

 

 
                        (21) 

 

For Equation 21, the term                
 

 
  refers to the number of people 

who survive the vaccine but have fever-like symptoms (due to receiving the vaccine after 
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the disease has already spread). Those who have been in quarantine for five days or 

progressed to stage 4 are removed from the quarantine state (Kaplan et al., 2002, p. 

10939). 

Once people have been vaccinated in the queue states, the next state is a traced 

state but unsuccessfully vaccinated. For those who were either susceptible or in stage 1 of 

the disease, this means that even with the vaccination, their body cannot build up a 

tolerance to the disease and they will move to the additional states. With regards to those 

in stages 2, 3, or 4 of the disease, the vaccine does not help. This means that unless a 

person is quarantined, these people can still spread the disease as it progresses (Kaplan et 

al., 2002, p. 10939). 
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In Equation 22, the term                     
 

 
  refers to the 

unsuccessful vaccination of a person. The term     
  refers to the possibility of being 

infected and progressing to stage 1 (due to the interaction of a susceptible person with a 

failed vaccination interacting with the infected population). In Equation 23, the first stage 

of the disease with a failed vaccination is populated by those who either receive a vaccine 
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when they were susceptible (the     
  term) or while they were in stage 1 of the disease 

(the                      
 

 
  term). Those progressing to the second stage leave 

the   
   state. Equation 24 is increased by those entering stage 2 after receiving a vaccine 

outside the effective treatment window. It is also populated by those who receive a 

vaccine but were already in stage 2 (thus the vaccine is useless). Those progressing to 

stage 3 leave stage 2. In Equation 25, people who received ineffective vaccines while in a 

previous stage or stage 3 enter this state. Those surviving quarantine also enter this state, 

while those progressing to the next stage leave. Finally, Equation 26 deals with those in 

quarantine, previously failed vaccine stages, or progress from stage 3 who will eventually 

progress to stage 4 of the disease (Kaplan et al., 2002, p. 10939). 

For those who have successful vaccines, they go into the Immune/Recovered state 

(as shown in Equation 27). All others unfortunately will wind up in the death state (as 

shown in Equation 28). 
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Although R and κ do not refer to disease stages or states within the Markov chain, 

they are key factors that must be considered. R refers to the average number of infections 

per person. When R is greater than one, this essentially means a person is spreading a 

disease to more than one person and an epidemic can occur. κ is used to determine the 

rate people are traced (Kaplan et al., 2002, p. 10939). 
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λ is used to determine the number of untraced contacts who are infected. This 

number is determined by q, which is a conditional probability of contact depending on 

the stage of the disease (Kaplan et al., 2002, p. 10940). 
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 Using these equations, Kaplan et al. (2002) were able to model mass and trace 

vaccination programs. 

Extensions to Kaplan et al.’s (2002) Model 

Using the Kaplan et al. (2002) model as a base, we were able to discretize time to 

account for days and code parameters for several variables instead of having hard coded 

values. Given the equations provided, an attempt was made to replicate the authors’ 
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results to verify the model. In order to do this, the same parameters specified by the 

authors were used. The first extension includes change to how the model treats time. 

Since all the parameters involving time were in days in the model developed for this 

thesis, the number of people susceptible, exposed, and so forth to the smallpox virus were 

calculated to a half hour rate and added to the previous number (in order to mimic the 

continuous functions Kaplan et al. (2002) use).  

To carry out this calculation, one change had to be made. In the Kaplan et al. 

(2002) the equations rely on continuous equations while the daily time interval involves a 

discrete approach. Kaplan et al.’s (2002) models rely on the following term in an 

exponential function: 

       
 

 
  

Unfortunately, in a discrete model, this creates complications. To illustrate the 

point, if one person is in line for a vaccine and the above term is used, then dQ/dt is 

approximately -50 people/day. However, if we modify the term as follows: 

      
  

 
  

then if one person is in line for a vaccine, then dQ/dt is approximately -1person/day.  

Essentially, the term 
  

 
 is incorporated when the number of people infected in line 

in a day exceeds the number of total vaccines administered in one day. When Q exceeds 

µn, the term 
  

 
 is less than one and the number of people in line cannot all be vaccinated 

(thus carrying excess people into the next day’s queue). 
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 The second extension of the Kaplan et al. (2002) model includes parameters 

which could be adjusted in order to model other diseases. Diseases such as viral 

hemorrhagic fevers and plague could be modeled using this structure due to their ability 

to spread from person to person and the possibility of death. All parameters used in 

Kaplan et al.’s (2002) equations are established in the first section of code using Matlab 

(included in Appendix B). This allows modifications to be made increasing the ability to 

model uncertainties and conduct sensitivity analysis. Once necessary parameters and 

starting conditions are defined, the program can be executed to reflect the disease of 

interest. 

 As discussed in the literature review, diseases that rely on mosquitoes for 

dissemination, such as malaria, are not ideal for this approach. However, the equations 

could be modified by including differential equations that include the mosquito 

population, the infection rate of mosquitoes, and the rate infected mosquitoes infect 

humans. 
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Table 5. Parameters For Other Diseases Using Kaplan et al. (2002) Model  

Disease Type Category r1 r2 r3 r4 Vaccine 

Efficacy 

Death 

Rate 

Smallpox Virus A 3 8 3 12 0.975 0.3 

Plague* Bacteria A 1 1 1 1 Unknown*** 0.5 

Ebola** Virus A 5 0 7 7 Unknown*** 0.65 

Marburg** Virus A 5 0 7 7 Unknown*** 0.25 

Lassa** Virus A 10 0 7 7 Unknown*** 0.18 

 

* numbers are reflective of pneumonic plague. If bubonic plaque was used, Kaplan’s 

model would have to be modified since victims given antibiotics within 24 hours of 

showing symptoms could still recover (however, this form of plaque spreads via fleas, 

not humans) 

** for Ebola and Marburg, the transmission rate would need to be severely reduced. 

While there are cases of human-human spread, it requires close contact 

*** Vaccines are either in the investigational phase, have been discontinued, or have not 

been evaluated for ethical purposes (DHS, 2004) (Fong & Alibek, 2005) 

 

Additional Notes: 

-According to Fong, Junin, Machupo, Guanarito, and Sabia virus could be modeled (same 

family and genus as Lassa virus), as well as Crimean-Congo Hemorrhagic Fever virus 

and the Andes virus (2005).  

-If we consider diseases not recognized as biological agents, influenza, tuberculosis, and 

measles could also be modeled.  

-All numbers reported in the table are averages, not ranges. 

Kaplan et al.’s (2002) Use of Their Model 

 The model developed by Kaplan et al. (2002) was utilized to compare and 

contrast a mass vaccination and trace vaccination policy. By comparing the amount of 

time needed to contain an outbreak, the estimated number infected, and the estimated 

number of casualties between the two policies, the authors are able to show that a mass 
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vaccination policy is more effective in containing an outbreak. With a mass vaccination 

policy, the estimated number of casualties decreases by approximately 109,000 and the 

number infected decreases by approximately 365,000 (Kaplan et al., 2002). With the pre-

vaccination program, the results are not nearly as effective as a mass vaccination 

program. However, the pre-vaccination policy could be an effective alternative to trace 

vaccination.  

Conclusion 

 Using the Bureau of Transportation Statistics, an airport network was constructed. 

With this network, variations such as a four flight itinerary, flight plans based on several 

airlines, and a two flight itinerary from an international arrival hub are alternative 

methods for determining airports with significant passenger traffic. By using a cascade 

network approach, key airports for disease propagation are able to be recognized. As 

displayed in Figure 4, analysis of these itineraries identify key airports that need to be 

protected with biodetection equipment. In addition to the network approaches, Kaplan’s 

model was extended. In the event of a disease outbreak, appropriate measures can be 

taken to mitigate the effects. The Results and Analysis chapter, which follows, present 

the outcomes of the network analysis and disease spread models, as well as help identify 

key measures that should be implemented. 
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4. Results and Analysis 

Introduction 

 The Results and Analysis chapter highlights key findings from an analysis of a 

case scenario with the models built. Once the data was reorganized into matrices and the 

networks were generated, flight itineraries ideal for an attack were generated and 

identified. These flight itineraries focus on key flights in the network based on the 

passenger traffic volume travelling between airports. Aside from looking at the US 

airport network as a whole, analysis was conducted with respect to several airlines, 

BioWatch considerations, and international arrivals. Cascade networks were also applied 

as in the notional example.  

 Kaplan’s model, extended for this study, was also applied in the notional scenario. 

The primary focus of analyzing the Kaplan et al. (2002) model was to observe an 

alternate strategy for mitigating an outbreak. In addition, several factors were changed for 

additional insight, especially with regards to bio-engineering. Using these results, key 

policies and strategies can be recommended for combating various biological threat 

scenarios. 

Airport Network (up to Four Flight Itinerary) 

The first scenario run involved generating four flight itineraries. Before looking at 

the itineraries, it is worth reviewing the top ten flights based on the volume of passengers. 

This data is based on the flight data from the U.S. Bureau of Transportation Statistics for 

December 2012. These are presented in Table 6. 
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Table 6. Top Ten Directed Flights 

Origin Destination Passengers 

San Francisco Los Angeles 139,889 

NY (JFK) Los Angeles 132,190 

Los Angeles NY (JFK) 130,561 

Los Angeles San Francisco 128,409 

Atlanta Orlando 112,906 

NY (LGA) Atlanta 104,653 

Atlanta 

Fort 

Lauderdale 104,375 

Chicago NY (LGA) 103,258 

Atlanta NY (LGA) 102,863 

Orlando Atlanta 102,639 

 

If the direction of the flight was not important, the most frequently travelled flights are as 

presented in Table 7. 

Table 7. Top Ten Undirected Flights 

Airport Pair   Passengers 

San Francisco Los Angeles 268,298 

NY (JFK) Los Angeles 262,751 

Atlanta Orlando 215,545 

NY (LGA) Atlanta 207,516 

Chicago NY (LGA) 204,304 

Fort 

Lauderdale Atlanta 197,836 

Los Angeles Chicago 180,277 

Los Angeles Honolulu 177,743 

Dallas Los Angeles 176,985 

Honolulu Kahului 174,166 

 

 In reviewing these flights, a few items should be noted. First, most of the highly 

populated routes include cities where BioWatch is known to have been implemented. 

While there are a few cities not specifically mentioned as part of the program that are in 

these top ten lists, cities such as New York, Atlanta, Los Angeles, and San Francisco are 

obvious choices for the program. There are a few interesting airports listed, however. The 



72 

 

ones that stand out are those to or from Florida. Cities such as Fort Lauderdale and 

Orlando are not nearly as populous as New York. However, due to tourism and 

vacationing, especially for a cruise, these airports are frequently used. Kahului, HI is 

included for similar reasons as well. One other noticeable trend is the high volume of 

traffic between San Francisco and Los Angeles. This is surprising due to their relatively 

close location, which will affect the itinerary optimizing routine. Due to an optimization 

based on passenger traffic, flight itineraries going from the east coast to the west coast (or 

vice versa) include this connection based on its extremely large volume (see Table 8).  

Initially, no distance constraints were included in the model (however, the 

network was programmed not to include a cycle of airports). The results displayed in 

Table 8 were generated by finding an optimal flight itinerary based on traffic starting at 

every airport. These results were then ranked based on their score, which is the sum of all 

traffic for each flight pair incorporated in the itinerary in a month. 

Table 8. Top Ten Flight Itineraries (without distance constraints) 

 

1 2 3 4 5 Score 

1 
New York City, NY 

(LaGuardia) Chicago, IL (O'Hare) 
San Francisco, 

CA Los Angeles, CA 
New York City, NY 

(JFK) 448,005 

2 

New York City, NY 

(JFK) Los Angeles, CA 

San Francisco, 

CA Chicago, IL (O'Hare) 

New York City, NY 

(LaGuardia) 442,724 

3 San Francisco, CA Los Angeles, CA 
Chicago, IL 

(O'Hare) 
New York City, NY 

(LaGuardia) Atlanta, GA 437,974 

4 Atlanta, GA Orlando, FL 

New York City, 

NY (JFK) Los Angeles, CA San Francisco, CA 428,707 

5 Phoenix, AZ Denver, CO 
San Francisco, 

CA Los Angeles, CA 
New York City, NY 

(JFK) 423,653 

6 Las Vegas, NV Denver, CO 

San Francisco, 

CA Los Angeles, CA 

New York City, NY 

(JFK) 417,135 

7 Orlando, FL Atlanta, GA 

San Francisco, 

CA Los Angeles, CA 

New York City, NY 

(JFK) 417,004 

8 Chicago, IL (O'Hare) 

New York City, NY 

(LaGuardia) Atlanta, GA Los Angeles, CA 

New York City, NY 

(JFK) 416,120 

9 Dallas, TX (DFW) Chicago, IL (O'Hare) 
San Francisco, 

CA Los Angeles, CA 
New York City, NY 

(JFK) 415,693 

10 Los Angeles, CA San Francisco, CA 

Chicago, IL 

(O'Hare) 

New York City, NY 

(LaGuardia) Atlanta, GA 415,187 
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 Based on these results, the need for distance constraints was obvious. Clearly, the 

first result involves as close to a complete round trip (without using the same airport 

twice) as one will get. This result would not make sense due to the approximately twenty 

minute drive needed to get from LaGuardia to JFK International Airport (or the needless 

visit to the west coast only to get back to the east coast in the same day). Other results, 

such as itinerary 7, involve an unnecessary and unrealistic flight path to get from Orlando 

to New York.  

After observing the distance groups between airports in the results displayed in 

Table 6, distance constraints were programmed into the model. The following results 

were generated: 

Table 9. Top Ten Flight Itineraries (with Los Angeles & San Francisco connection) 

 

1 2 3 4 5 Score 

1 San Francisco, CA Los Angeles, CA Dallas, TX (DFW) Atlanta, GA New York City, NY (LaGuardia) 398,936 

2 New York City, NY (Laguardia) Atlanta, GA Dallas, TX (DFW) Los Angeles, CA San Francisco, CA 391,878 

3 Honolulu, HI San Francisco, CA Los Angeles, CA Chicago, IL (O'Hare) New York City, NY (LaGuardia) 368,777 

4 Santa Ana, CA San Francisco, CA Los Angeles, CA New York City, NY (JFK) San Juan, PR 363,903 

5 Tampa, FL Atlanta, GA Dallas, TX (DFW) Los Angeles, CA San Francisco, CA 363,374 

6 New York City, NY (JFK) Los Angeles, CA San Francisco, CA Honolulu, HI Kona, HI 361,583 

7 Kona, HI Honolulu, HI San Francisco, CA Los Angeles, CA New York City, NY (JFK) 360,469 

8 Lihue, HI Honolulu, HI San Francisco, CA Los Angeles, CA New York City, NY (JFK) 357,122 

9 Orlando, FL Atlanta, GA Dallas, TX (DFW) Los Angeles, CA Honolulu, HI 353,311 

10 Oakland, CA Los Angeles, CA San Francisco, CA Chicago, IL (O'Hare) New York City, NY (LaGuardia) 349,086 

  

Clearly, the itineraries appear more realistic (and less like a erratic cross country 

trip). However, every path in the top ten results used the connection between Los Angeles 

and San Francisco. While it is not unreasonable to use this flight to connect to other 
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flights, most online travel websites will use either San Francisco or Los Angeles to get 

from Hawaii to the east coast (not both).  

 In order to make the network more realistic (in terms of booking flights), the 

flight linking Los Angeles and San Francisco was cut (the volume of traffic between the 

two airports is changed to zero so the program does not consider the flight as part of an 

optimal path). With this network, the following top flights were generated: 

Table 10. Top Ten Flight Itineraries 

  1 2 3 4 5 Score 

1 

New York City, NY 

(LaGuardia) Atlanta, GA 

Dallas, TX 

(DFW) Los Angeles, CA Honolulu, HI 355,325 

2 Honolulu, HI Los Angeles, CA 

Dallas, TX 

(DFW) Atlanta, GA Orlando, FL 354,977 

3 Orlando, FL Atlanta, GA 

Dallas, TX 

(DFW) Los Angeles, CA Honolulu, HI 353,311 

4 San Francisco, CA Las Vegas, NV Los Angeles, CA 

New York City, 

NY (JFK) San Juan, PR 341,263 

5 Boston, MA 
New York City, 

NY (JFK) Los Angeles, CA Honolulu, HI Kona, HI 333,189 

6 San Juan, PR 

New York City, 

NY (JFK) Los Angeles, CA Las Vegas, NV San Francisco, CA 332,382 

7 Lihue, HI Honolulu, HI Los Angeles, CA 
Chicago, IL 

(O'Hare) 
New York City, NY 

(LaGuardia) 330,535 

8 Kona, HI Honolulu, HI Los Angeles, CA Atlanta, GA Orlando, FL 329,199 

9 Tampa, FL Atlanta, GA 

Dallas, TX 

(DFW) Los Angeles, CA Honolulu, HI 326,821 

10 Fort Lauderdale, FL Atlanta, GA Los Angeles, CA Honolulu, HI Kona, HI 323,948 

 

 Based on the itineraries presented in Table 10, it is clear that the program can 

generate reasonable flight itineraries. While there might be a slight discrepancy, such as 

in itinerary number 4 with the first three flights, overall the results look like actual 

options on an online travel site. If one wanted to manually switch one of the flights, it 

could be done, but the itinerary will no longer be optimized. It should also be noted that 

itinerary 2 and 3 are the same, but involve starting in different locations.  

Clearly, the itineraries utilize a number of flights mentioned in the top ten most 

trafficked flights. In addition, every itinerary goes to at least two cities known to have 
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BioWatch. Although the score does not give us an estimate for the number of people 

affected on each itinerary, it highlights the volume of traffic using these flights (just 

during one month). Should an attack occur on one of these itineraries and just the flights 

mentioned were quarantined, the mass disruption in traffic based on these numbers could 

be devastating. An even greater impact would occur if the airports were closed or if 

people completely distrusted the airlines. In addition, while not included in the example, 

the dispersion of fliers who may have been infected throughout the nation could cause 

greater difficulties. If specific flight volume were available (perhaps right after an attack 

and its agent were detected) the true number of persons on those specific flights could be 

used. This would give a rough estimate of the number exposed. 

Aside from attacking highly trafficked routes, detection could be considered while 

booking a flight itinerary. Therefore, the following cities might be avoided due to 

BioWatch; Philadelphia, New York, Washington DC, Boston, Chicago, San Francisco, 

Atlanta, St. Louis, Houston, Los Angeles, and San Diego. There are 21 additional cities 

that are reported to have BioWatch but have not been announced to the public. Assuming 

a terrorist organization wished to avoid detection in order to inflict mass infections, the 

following routes would be most beneficial: 
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Table 11. Top Ten Flight Itineraries (with BioWatch) 

 

1 2 3 4 5 Score 

1 Anchorage, AK Seattle, WA Denver, CO Dallas, TX (DFW) Orlando, FL 233,541 

2 Orlando, FL Dallas, TX (DFW) Denver, CO Seattle, WA Anchorage, AK 224,876 

3 San Juan, PR Orlando, FL Dallas, TX (DFW) Denver, CO Las Vegas, NV 223,971 

4 Las Vegas, NV Denver, CO Dallas, TX (DFW) Orlando, FL San Juan, PR 223,824 

5 Burbank, CA Las Vegas, NV Denver, CO Dallas, TX (DFW) Orlando, FL 221,504 

6 Austin, TX Dallas, TX (DFW) Phoenix, AZ Honolulu, HI Kahului, HI 220,245 

7 Oakland, CA Las Vegas, NV Denver, CO Dallas, TX (DFW) Orlando, FL 218,634 

8 San Antonio, TX Dallas, TX (DFW) Phoenix, AZ Honolulu, HI Kahului, HI 216,648 

9 Charlotte, NC Dallas, TX (DFW) Phoenix, AZ Honolulu, HI Kahului, HI 215,756 

10 Seattle, WA Denver, CO Dallas, TX (DFW) Orlando, FL San Juan, PR 213,294 

  

Based on the results, there are obviously a number of cities that are vulnerable to 

an attack. Clearly, cities such as Dallas, Honolulu, Orlando, and Denver should be 

included in the BioWatch program, if they are not already. While disruption of these 

airports may not displace as much traffic as the itineraries generated using the whole 

network, the results are still critical. Just by initiating an attack from Seattle, WA (using 

itinerary 10 in Table 11), the estimated traffic volume during the month of December is 

still greater than 200,000 people. While only those on the actual flight on the day of the 

attack risk infection, based on volume, this is a potentially significant attack. 

 After considering BioWatch implications on the whole airport network, several 

airlines were analyzed. This was done to emulate most online travel websites which try to 

have users stay with one airline (as shown in Figure 9 and Figure 10). This saves the user  

money and makes it easier for airports to organize their terminals. Several airlines were 

selected and given names A, B, C, and D. These airlines were analyzed based on their 
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whole network and if a terrorist group was avoiding known detection sites (similar to the 

analysis just conducted with the whole airport network). 

Based on the results using airline A, Dallas, TX was incorporated in every flight 

itinerary, regardless of BioWatch considerations. Once known BioWatch was included, 

San Juan, PR, Orlando, FL, and Miami, FL also appeared in every route. While these 

itineraries have very little variation, it is obvious that these airports would be critical 

nodes to compromise in terms of finance and traffic for the airline. The results are 

displayed in Table 30 and Table 31 in Appendix D. 

 Based on the network using airline B, similar results occurred. While Dallas, TX 

showed up in several routes, Phoenix, AZ and Charlotte, NC were included in every 

flight itinerary regardless if known BioWatch was considered or not. If known BioWatch 

cities were considered, Dallas appeared more frequently in the itineraries, along with 

Orlando. The results are displayed in Table 32and Table 33 in Appendix D. 

 Unfortunately, analysis of airline C produced some complications. While the San 

Francisco/Los Angeles connection was severed in the whole network analysis, it was 

restored in the airline analysis. It was assumed that by breaking the network up by 

airlines, no one airline would heavily rely on this specific flight. Unfortunately, airline C 

has a great deal of reliance on the San Francisco/Los Angeles connection if BioWatch is 

ignored. To make matters worse, when BioWatch was considered, no specific airport was 

used in a majority of the itineraries. While the flights were sporadic, there were a few 

airports that appeared several times. This included Honolulu, Orlando, Anchorage, 

Seattle, Denver, and West Palm Beach. Surprisingly though, Newark became a critical 

airport once known BioWatch was avoided. Based on the results of airline C, the San 
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Francisco/Los Angeles connection is vital to their network, while a few airports not 

known to have BioWatch may be important. The results are displayed in Table 34 and 

Table 35 in Appendix D. 

 Lastly, airline D was analyzed. When known BioWatch was not considered, 

Orlando was used in all itineraries. However, once known BioWatch was considered, 

Orlando was still popular, but it was not used in every itinerary. Instead, Seattle, 

Minneapolis, and Detroit were frequently used. Based on the results, airline D clearly 

relied on Orlando and its connection to New York and Atlanta. The results are displayed 

in Table 36 and Table 37 in Appendix D. 

Two Flight with International Arrival Analysis 

 After considering the four flight itineraries within the country, international 

arrival flights were considered. Based on the Bureau for Transportation Statistics, the top 

ten airports that serviced domestic and international flights in 2012 were the following: 

Table 12. Top Ten Airports for International Flights 

Airport Enplaned Passengers 

New York City, NY (JFK) 12,334,200 

Miami, FL 9,314,500 

Los Angeles, CA 8,273,400 

Newark, NJ 5,577,100 

Chicago, IL (O'Hare) 5,055,200 

Atlanta, GA 4,775,500 

San Francisco, CA 4,534,800 

Houston (Bush) 4,220,500 

Washington, DC (Dulles) 3,205,100 

Dallas, TX 2,885,100 
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 Using a similar approach to the four flight itinerary, a two flight itinerary starting 

from each of these airports were generated. As shown in Table 38 in Appendix E, there 

was a large reliance on the using the San Francisco/Los Angeles connection. As done 

with the four flight itinerary for the whole network, this connection was severed. The 

model was executed again and the results are presented in Table 39 in Appendix E. By 

looking at the results, it is clear that most of the traffic flows to other large airports, most 

with BioWatch units.  

 Although most of the airports in Table 12 are known to have BioWatch, there are 

three exceptions; Miami, Newark, and Dallas. With BioWatch taken into consideration 

and the three named airports serving as ideal entry points from international flights, the 

following itineraries were generated: 

Table 13. Top Ten using International Airports and Two Flights (Using BioWatch) 

Start at Miami 
  

 

1 2 Score 

1 Dallas, TX Denver, CO 116,051 

2 Dallas, TX Phoenix, AZ 99,293 

3 Dallas, TX 

Las Vegas, 

NV 97,390 

4 Orlando, FL Newark, NJ 95,404 

5 Dallas, TX 
San Antonio, 

TX 94,106 

6 Dallas, TX Austin, TX 93,938 

7 Denver, CO 

Las Vegas, 

NV 89,678 

8 Orlando, FL Detroit, MI 86,305 

9 Dallas, TX Seattle, WA 83,385 

10 Orlando, FL Dallas, TX 81,561 
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Start at Newark 
 

 
1 2 Score 

1 Denver, CO Phoenix, AZ 111,480 

2 Denver, CO 
Las Vegas, 

NV 108,818 

3 Dallas, TX Denver, CO 100,055 

4 Honolulu, HI Kahului, HI 97,339 

5 Orlando, FL Miami, FL 96,327 

6 Orlando, FL Dallas, TX 95,201 

7 Phoenix, AZ 
Las Vegas, 

NV 94,472 

8 Orlando, FL 

San Juan, 

PR 93,589 

9 Charlotte, NC Dallas, TX 93,361 

10 Orlando, FL 
Charlotte, 

NC 91,640 

    Start at Dallas 
  

 
1 2 Score 

1 Denver, CO 
Las Vegas, 

NV 148,193 

2 Denver, CO Seattle, WA 134,158 

3 Denver, CO 

Salt Lake 

City, UT 129,683 

4 Phoenix, AZ 
Las Vegas, 

NV 116,033 

5 Denver, CO Portland, OR 113,820 

6 Phoenix, AZ Seattle, WA 108,747 

7 Denver, CO 

Santa Ana, 

CA 108,722 

8 Honolulu, HI Kahului, HI 103,071 

9 Denver, CO 

Sacramento, 

CA 101,031 

10 Denver, CO Omaha, NE 99,316 

 

 Based on the results in Table 13, it is clear that Denver, CO; Dallas, TX; Las 

Vegas, NV; and Orlando, FL are frequently visited. In addition, while the monthly 

volume of traffic is less than it was for the four flight itineraries, there is still roughly 

100,000 people using these flights in a month (again, the values are monthly proxies for 

average traffic, not the actual number of passengers on the specific flights). Should a 

malicious attack from abroad be anticipated, these airports should be equipped with 
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BioWatch, if they are not already. If they are equipped, a review of inspection 

frequencies and protocols may be called for. 

Cascade Network 

 Aside from building flight itineraries, a cascade network was also used to 

determine key locations to start a mass infection using the same information from the 

Bureau of Transportation Statistics based on the monthly traffic proxy. In this cascade 

network model, it is assumed that once a passenger threshold is reach, all flights leaving 

the compromised airport are infected. The expected number infected is the sum of people 

on flights leaving all the infected airports at the specified time (using the average number 

of people travelling per flight from the data). The minimum hour is the amount of time 

needed to reach all cities equipped with BioWatch (including one hour layovers). While 

these assumptions may not be realistic, they help distinguish key airports for initiating a 

disease outbreak and allow a consistent metric to help differentiate various starting 

locations. Using a threshold of either 10% volume of traffic or 100 infected passengers, 

while focusing on time and number infected, Table 14 summarizes the top ten results. 
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Table 14. Top Ten Starting Locations for a Cascade Network Infection (100 Person 

or 10% Threshold) 

Minimum 

Hour Expected Number Infected Origin City 

6 47,772 Dallas, TX (DFW) 

6 45,943 Kansas City, MO 

6 44,165 Denver, CO 

6 31,187 

Chicago, IL 

(Midway) 

7 71,322 Minneapolis, MN 

7 66,265 Sioux Falls, SD 

7 65,338 Houston, TX (IAH) 

7 63,992 Lincoln, NE 

7 63,092 Indianapolis, IN 

7 60,159 New Orleans, LA 

  

 Clearly, each of the cities listed in Table 14 is well connected and can reach all 

known airports with BioWatch within seven hours (assuming no delays, one hour 

layovers, and flights on the hour). It should be noted that all of the listed cities are located 

within the center region of the country (under the Central and Mountain Time Zones). By 

launching an attack from a central location, it makes sense that these airports would be 

well situated in a cascade scenario. While it is surprising that a city such as Kansas City, 

MO scored better than Houston, TX in the amount of time needed to reach all known 

BioWatch cities, Houston infected more people.  

Another interesting observation is the reliance on Sioux Falls for a cascade 

spread. Although it infected the known BioWatch Airports in the same amount of time as 

Houston, TX and New Orleans, LA, it scored higher under the expected number infected. 

While airports such as Sioux Falls, SD; Lincoln, NE; and Kansas City, MO have not 

appeared nearly as frequently as Denver, CO or Dallas, TX throughout the flight itinerary 

analysis, it is clear that their location could still be exploited. If these cities are infected, 
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passengers from these cities are likely to connect to a high volume hub city in one flight. 

From there, the infection can cascade to other hubs and regional airports. 

 If the threshold is increase to 200 infected people or 20% of the traffic, Table 15 

shows which airports serve as key starting locations (once again assuming no delays, one 

hour layovers, and flights on the hour). 

Table 15. Top Ten Starting Locations for a Cascade Network Infection (200 Person 

or 20% Threshold) 

Minimum 

Hour Expected Number Infected Origin City 

7 96,713 Denver, CO 

7 94,193 Dallas, TX 

7 55,806 Lincoln, NE 

8 113,948 Kansas City, MO 

8 111,573 Wichita, KS 

8 110,926 Atlanta, GA 

8 106,190 

Chicago, IL 

(Midway) 

8 103,323 Baton Rouge, LA 

8 102,387 Sioux Falls, SD 

8 101,727 Monroe, LA 

  

Clearly, Denver, CO; Dallas, TX; and Lincoln, NE still serve as prime areas to 

launch an attack. There are a few noticeable trends. As expected, with a higher threshold, 

the attack should take longer and involve more infections. It is interesting that the 

shortest amount of time only increased by an hour, while the number exposed increased 

by approximately 49,000. One other noticeable feature is the reliance on centrally located 

airports. While Atlanta is the exception, all other airports still fall in areas within the 

Central and Mountain Time Zone. Based on these results, should an attack occur in the 
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central portion of the country, an infection could spread to both coasts quickly. Similar to 

the lower threshold, airports located in the center of the country could easily be exploited. 

Analysis for BioWatch Considerations 

 After analyzing various airlines and flight itineraries, the following cities should 

include the Biowatch program if they are not already involved: 

Table 16. Suggested Airports for the BioWatch Program 

Airport Network Two Flight Scenario Cascade 

Orlando, FL Newark, NJ Dallas, TX (DFW) 

Dallas, TX Miami, FL Kansas City, MO 

Honolulu, HI Dallas, TX Denver, CO 

Phoenix, AZ Denver, CO Minneapolis, MN 

Charlotte, NC Orlando, FL Sioux Falls, SD 

San Juan, PR Las Vegas, NV Lincoln, NE 

Seattle, WA Honolulu, HI Indianapolis, IN 

Miami, FL Fort Lauderdale, FL New Orleans, LA 

Denver, CO 

 

Wichita, KS 

Newark, NJ 

 

Baton Rouge, LA 

Las Vegas, NV 

  Minneapolis, 

MN 

  Kahului, HI 

  Detroit, MI 

    

 Those recommended under the Airport Network results appeared in at least ten 

itineraries on the various airlines studied (results summarized in Table 40 in Appendix F). 

For the Two Flight Scenario results indicate which airports receive majority of the traffic 

from large international airports. The first three results are airports in the top ten two 

flight airport list but are not known to have BioWatch. The following results are airports 

that are frequently travelled to or from an airport hub that is known for receiving 
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international flights (summarized in Table 41 in Appendix F). Finally from the Cascade 

Network, several cities are ideal starting points to launch a biological attack, especially 

one involving a highly infectious disease with a short incubation period. Again, even if 

these cities do have BioWatch, a review of the inspection frequencies and protocols 

would be called for, particularly if intelligence supported such as attack. 

These cities, such as Denver and Dallas, serve as major hubs and could be 

exploited if a terrorist group was trying to inflict damage while avoiding known 

BioWatch cities. Although Orlando and San Juan may appear to be random airports or a 

result of the program and its distancing constraints, there is a concern with regards to 

cruise lines and theme parks. With Orlando, the area is ideal for family vacations. With 

regards to San Juan and Fort Lauderdale, they serve as ideal locations for cruise lines to 

operate. 

To illustrate how critical these airports are, consider the following itinerary (first 

result from the top ten itineraries with BioWatch considered): 

Anchorage, AK → Seattle, WA → Denver, CO → Dallas, TX → Orlando, FL 

If an attack occurred on this flight path, assuming the entire plane was 

compromised and half the passengers stopped flying after one flight, the following 

infections would occur (using the average number of passengers from the data): 

-Approximately 146 infected passengers would arrive in Seattle, WA from Anchorage, 

AK, with 73 remaining there and a portion of passengers possibly going to Albuquerque, 

NM 

-Approximately 138 infected passengers would arrive in Denver, CO from Seattle, WA, 

with 69 remaining there and a portion of passengers possibly going to Albany, NY  
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-Approximately 102 infected passengers would arrive in Dallas, TX from Denver, CO, 

with 52 remaining there and a portion of passengers possibly going to Atlanta, GA 

-Approximately 134 infected passengers would arrive in Orlando, FL from Dallas, TX, 

with 67 remaining there and a portion of passengers possibly going to Scranton, PA 

In this example, there could be an initial estimate of 520 passengers infected and 9 

airports impacted. 

While the assumption that a whole flight was infected may be unlikely, one can 

see that even if a few people are infected and spread out just to one additional location 

(other than where the terrorist is headed), the results are concerning. By just assuming 

passengers either get off at their arrival airport or head to only one other airport, a disease 

outbreak could occur in nine cities. In a real world scenario using this flight itinerary, the 

number of infected passengers heading to Albany, Albuquerque, Scranton, and Atlanta 

would probably be low. Unfortunately, the number of cities where the disease would 

spread could easily triple (assuming half the passengers had connecting flights 

elsewhere).  This spread to secondary and tertiary airports and cities renders such an 

attack particularly alarming. 

Military Application of BioWatch 

Aside from considering the widespread implications of a disease, another concern 

is the military. For example, there are various cities through the US with large clusters of 

bases near the area. Newport News, VA; Colorado Springs, CO; and San Antonio are but 

a few cases where multiple bases utilize the nearby airport. While the four flight itinerary 

program can find the optimal flight path starting at these locations (or the itinerary could 
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be reversed to finish the attack at these locations), it would not make a great deal of sense 

if the goal of the attack was to infect the greatest number of US citizens or military for 

two reasons. First, the military makes up barely 2% of the population. For this reason, it 

should be obvious that the flow of military personnel does not exactly dictate which 

routes are more trafficked. Second, if one looked at the itinerary where an attack starts at 

Newport News in Table 17, it cannot be assumed that those travelling from Dallas to Los 

Angeles (for example) are mostly people from (or going to if the direction is reversed) 

the Newport News area.  

Table 17. Itinerary for Three Cities with Military Bases nearby 

1 2 3 4 5 Score 

Newport News, VA Atlanta, GA Dallas, TX Los Angeles, CA Honolulu, HI 310,981 

Colorado Springs, 

CO 

Las Vegas, 

NV 

Los Angeles, 

CA 

New York City, NY 

(JFK) San Juan, PR 309,543 

San Antonio, TX Dallas, TX Atlanta, GA Orlando, FL Miami, FL 309,350 

 

Table 18. Flight Itinerary for Three Cities with Military Bases nearby (BioWatch 

considered) 

1 2 3 4 5 Score 

Newport News, VA 

Charlotte, 

NC Dallas, TX Denver, CO 

Salt Lake City, 

UT 216,648 

Colorado Springs, 

CO Denver, CO 

Salt Lake City, 

UT Honolulu, HI Kahului, HI 187,616 

San Antonio, TX Dallas, TX Phoenix, AZ Honolulu, HI Kahului, HI 175,947 

 

The only useful insight one can gain from Table 17 and Table 18 is that an attack 

on the Dallas/Atlanta flight might affect people trying to get to San Antonio or Newport 

News. A more useful source for identifying key flights and airports that could 

compromise the military, if the military is the target of the attack, are those in the GSA 

City Pair Program. By using this program, key flights can be identified for potentially 
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affecting the military. If key flights through this program were the focus, the net traffic 

on these flights could be set to significantly large number for the optimization program to 

pick up and likely include in its generated itineraries. For simplicity, the airports in this 

program were studied and organized based on how many connecting flights they had 

supported by the GSA in Table 19 (the entire table, in alphabetical order and by number 

of GSA contracted flights, are presented in the Appendix F). 

Table 19. Top 20 Airports in the GSA City Pair Program 

City 

Airport 

Code 

Number of 

GSA 

ATLANTA, GA ATL 235 

WASHINGTON, DC WAS 163 

DALLAS-FT. WORTH, TX DFW 150 

WASHINGTON, DC DCA 144 

DENVER, CO DEN 142 

BOSTON, MA BOS 128 

WASHINGTON, DC BWI 124 

LOS ANGELES, CA LAX 118 

ALBUQUERQUE, NM ABQ 107 

HONOLULU, HI HNL 101 

NASHVILLE, TN BNA 100 

NEW YORK, NY NYC 98 

DETROIT, MI DTW 93 

COLUMBIA, SC CAE 88 

WASHINGTON, DC IAD 88 

COLORADO SPRINGS, 

CO COS 83 

ANCHORAGE, AK ANC 81 

AUSTIN, TX AUS 80 

NORFOLK, VA ORF 80 

EL PASO, TX ELP 79 

 

Based on Table 19, it appears that a number of airports known to have BioWatch 

are included. However, Dallas and Denver are part of the top five airports with the most 
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connecting flights. Albuquerque, Honolulu, Nashville, and Detroit, as well as other cities 

such as Colorado Springs, CO and Norfolk, VA are also ideal airports for impacts to 

large military personnel traffic (or a terrorist attack aimed at the nation’s armed forces). 

For example, Kirtland AFB is located in Albuquerque, NM and is home to the Air Force 

Nuclear Weapons Center, the 58
th

 Special Operations Wing, the Defense Threat 

Reduction Agency, the Air Force Operations Test and Evaluation Center, and Directed 

Energy Directorate, as well as several other units and organizations (U.S. Air Force, 

2014). While the cost of protecting all these airports would be expensive, at least those 

with 100 or more connecting flights in the GSA program should be considered for 

BioWatch if they are not already in the program. These cities are frequently used by the 

military and the numerous connections reflect the large potential a deadly infection. 

Should one flight be compromised and not detected in time, the results would be 

devastating and national security could be severely impaired; this finding is further 

highlighted by the extensions to the Kaplan et al. (2002) model.  

Pre-vaccination using the Kaplan-based Model 

 Recall in Chapter 2, Kaplan et al. studied the effects of mass and trace vaccination 

using Markov chains (Kaplan et al., 2002). Using a vaccination rate of 200 vaccines per 

day, Kaplan et al. (2002) showed a significant decrease in the number of casualties and 

infected with a mass vaccination program. In order to reproduce their results, the model 

was discretized using the provided rates of change and starting conditions. In addition, 

notional levels of pre-vaccination were considered, as shown in Table 20.  
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Table 20. Comparison of Kaplan et al. (2002) Model and Extension 

Policy 
Mass 

Vaccination 
Trace 

Vaccination 
Discretized 

Model 
10% Pre-

Vaccination 
20% Pre-

Vaccination 

Infected 1,830* 367,000* 369,500 314,600 125,300 

Casualties 560* 110,000* 110,100 93,500 76,000 

Approximate 
Time to 

Contain an 
Outbreak 

(Days) 50** 200** 200 200 200 

Approximate 
Peak Number 

Infected 1,600** 130,000** 129,000 96,000 65,000 

Largest 
Queue 
During 

Outbreak 10,000,000* 2,700** 2,800 2,000 1,300 

 

*Based on numbers reported in the Kaplan et al. (2002) paper 

** Based on the provided graphs (Kaplan et al., 2002) 

 

After modifying the equations, Kaplan’s results are reproduced. Using this model, 

some valuable information can be gained (as shown in Table 20, as well as Figures 19 - 

28 in Appendix A). If pre-vaccination is considered before an attack, the size of the 

population that is considered susceptible is reduced. Clearly, if only 20% of the 

population is vaccinated, the number of people infected, waiting in the queue, and or 

dead, drops by almost 50% (compared to the traced vaccination program). This level 

could be reached by vaccinating military personnel, police, fire, and hospital workers.  

 According to the Bureau of Labor Statistics, there are approximately 780,000 

police officers employed as of May 2012 (U.S. Bureau of Labor Statistics, 2013). In 

addition, there are about 1.1 million firefights (both employed and volunteers) (Karter, 

2013) and 18 million health care workers in the US according to the CDC (CDC, 2014). 

Finally, there are about 1.4 million in the military (while this number is increased by 
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guard and reserve numbers for about 2.3 million, the current budget situation dictates that 

these numbers will decline soon) (U.S Census Bureau). With a population of roughly 314 

million, one can see that police, firefighters, healthcare workers, and military make up 

about 7% of the population.  

Assuming the distribution of those in the military, police, fire, and medical 

community were proportionally distributed around the country, about 700,000 would 

exist within a city of ten million. For simplicity, if this number were rounded up to one 

million (10%) and all were effectively pre-vaccinated, using the extended Kaplan’s 

model one can easily see a decrease in casualties should a smallpox attack occur. Based 

on the results, if 10% of the population is pre-vaccinated, the estimated number of deaths 

should decrease by about 16,000 to about 94,000 (15%), while the number of infected 

would be anticipated to drop from about 369,000 to 314,000 (15%). Although the 

casualties and number of infected could be reduced, it would require a larger portion of 

the population to be vaccinated. If those in the military, police, fire, and medical 

community offered to have their families vaccinated (in order to prevent an outbreak 

from occurring at home) or if vaccines were available to the public, it is possible that a 

higher percentage of pre-vaccination is obtainable. Unfortunately, should the fear of a 

smallpox attack cause panic, a massive demand for the smallpox vaccine could occur. If a 

large portion of the population were pre-vaccinated (with no attack actually occurring 

within five years), this large consumption of vaccines might be perceived as wasteful. 
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Additional Modifications of the Kaplan-based Model 

 Aside from looking at pre-vaccination, another modification was included in the 

Kaplan model. This involved changing the different factors of a disease to determine how 

sensitive the infection and death totals could be with a genetically engineered or altered 

disease. If one considers the stages of the disease, several changes should be obvious. 

The first is that shortening stage 1 should increase the number of deaths. Recall that stage 

1 is defined as the period where there are no symptoms but a vaccine is still effective. By 

decreasing the amount of time a vaccine could help someone, the number of infected and 

dead increases. The second consideration is that decreasing the length of stage 3, when 

people are infectious but do not yet show signs of the disease, should reduce the number 

of people infected and dead. This is due to the model allowing those in stage 3 being able 

to infect people longer. Third, increasing the death rate of a disease, making it more 

virulent, should increase the number of casualties in a biological attack.  

 Although these modifications make sense, it is worth investigating the impact 

these parameters have on the model (using a population of 10 million). If the length of 

stage 1 is decreased by one day (for the smallpox scenario, the change is from 3 days to 2 

days), the number of casualties increases by about 10,000 and the number infected 

increases by about 35,000. If the length of stage 3 is decreased by one day (for the 

smallpox scenario, the change is from 3 days to 2 days), the number of casualties 

decreases by about 65,000 and the number infected decreases by about 120,000. Clearly, 

stage 3 of the disease is a more critical factor in determining the spread and impact of an 

epidemic. If stage 2 or 4 is decreased by a day, there was not a noticed change as depicted 

in Figure 26 and Figure 28 (in Appendix A).  
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 To better understand how much of an impact a change on several disease 

parameters would be, a design of experiments was conducted. By changing the 1
st
 stage, 

3
rd

 stage, and death rate, the effects on the number of infected and dead in a population of 

ten million were studied. The 1
st
 and 3

rd
 stages had a base level of three days, with a low 

setting of two days and a high setting of four days in the design. Similarly, the death rate 

had a base level of 0.3, with a low setting of 0.2 and a high setting of 0.4. In addition, the 

initial number of people infected was varied (starting with an infected population of 

1000, 100, and 10) and the results were compared with a 10% pre-vaccination program in 

place (the cases are specified in Table 21 through Table 26 in Appendix A). 

 While the results are summarized in Table 21 through Table 26 (in Appendix A), 

there are a few interesting trends. First, changing the death rate over the range in the test 

did not affect on the model’s estimated number of people infected. Second, small 

parameter changes can still have a significant impact on the number of casualties and 

infected. If the length of stage 1 is decreased by a day, the number of infected and dead 

increases by 10% and 11% respectively. If it is increased by a day, the number infected 

and dead decrease by 7% and 8%, respectively. If the length of stage 3 is increase by a 

day, the number infected and dead are both increased by 50%. On the other hand, if stage 

3 is decreased by a day, the estimates for the number of infected and dead decrease by 

60% and 61%, respectively in the experiment design. With regards to the death rate, an 

increase from 0.3 to 0.4 yields a 33% increase in the estimated number dead (which 

makes sense since a 0.1 increase is 33% of 0.3). A decrease in the death rate to 0.2 

occurs, as expected the number of dead decreases by 33%. However, changing the death 

rate has no impact on the number of people infected over the settings in the design of 
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experiments. If these factors are combined, the effect of the disease can vary 

significantly. The worst case in this design is if the disease decreases the length of stage 1 

by a day, increases the length of stage 3 by a day, and has a death rate of 0.4 (with an 

initial 1,000 people infected). With these factors combined the number of infected and 

dead increases by 63% and 118% respectively. While the number of people initially 

infected was modified, it was only significant in determining the estimated number of 

people infected. Using the base case as a reference, the estimated number infected and 

casualties decreases by approximately 3,000 (0.8%) and 200 (0.2%) (respectively) when 

the initial number infected is changed from 1000 to 10. 

With the 10% per-vaccination, the infected and dead expected can both drop by 

12%. Unfortunately, this is lower than the 15% drop in the base case with a pre-

vaccination program. Clearly, a pre-vaccination program can not completely suppress an 

outbreak with worst case characteristics. Regardless, even when the strain of smallpox is 

modified to produce more devastating results, the 10% pre-vaccination program still 

reduces the impact of an outbreak significantly (using an α value of 0.01) (hypothesis test 

is included in Appendix A). To visualize the different outcomes for an infection starting 

with 1000 people infected and no pre-vaccination program in place, Figure 17 shows the 

number of infected and the number dead when the parameters are changed for various 

cases (the cases are specified in Table 21 in Appendix A). 
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Figure 17. Estimated Outcomes for Various Scenarios in a City of 10 Million 

After finding the estimated outcomes for various scenarios by modifying the 

length of stage 1, the length of stage 3, the death rate, and the initial number of people 

infected, the values were applied to a linear regression model. By conducting linear 

regression, the significance of the variables can be confirmed. Based on the linear model 

for the number of people infected, JMP determined that the length of stage 1 and 3 were 

statistically significant to determining the number of people infected. In addition, the 

initial number of people infected was important, but the death rate had no statistical 

significant affect on the model. This model appears reasonable based on the outcomes 

described earlier. In addition, the adjusted R squared is 0.99 (on a scale of zero to one 

with values closer to one being more desirable), indicating that any variance in the data 

can be explained by the linear model for small changes around the base numbers.  
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Once the number of infected was applied to a linear model, the number dead from 

an outbreak based on the various cases tested was also conducted. Based on the results, 

the length of stage 1, length of stage 3, and the death rate were considered significant 

variables. In this model, however, the initial number of people infected was not 

considered significant. It is hypothesized that this is due to how much impact the other 

variables had in determining the number of people dead from a smallpox attack compared 

to the initial number infected. The adjusted R squared in this regression is 0.93. 

 Additional linear regression models were constructed using the estimates from the 

pre-vaccination program. Although the estimated numbers of people infected and dead 

are lower in with a pre-vaccination program, the results of the linear regression models 

are very similar to the results without pre-vaccination. For the linear model focusing on 

the number of infected, the length of stage 1, the length of stage 3, and initial number 

infected were considered significant and had an adjusted R squared of 0.98. Likewise, the 

linear model for the number of people dead determined the length of stage 1, the length 

of stage 3, and the death rate significant, with an adjusted R squared of 0.92. Finally, all 

linear regression models were checked for constant variance and normally distributed 

residuals. All models met the assumptions and were therefore considered valid. All linear 

models, parameter estimates, and assumption checks are shown in Figure 29 through 

Figure 40 (in Appendix A). 

 From a biological standpoint, the characteristics of a disease, primarily stage 1 

and 3, are a major concern. If these stages can be modified through genetic engineering 

or if a strain mutates, the impact of an epidemic can grow at alarming rates. If a disease 

was determined to be modified and trace vaccination was needed to contain the outbreak 
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(assuming a disease has not been modified to the extent that existing vaccines were 

ineffective), a pre-vaccination program could reduce the number of casualties and 

infected. If an outbreak worsened and mass vaccination was required for containment, a 

pre-vaccination program would reduce the number of vaccines and time needed to protect 

the susceptible portion of a city. Clearly, if an attack utilizes a disease with enhanced 

virulence, the use of bio-detection equipment and pre-vaccination (if still effective) will 

be needed to mitigate the casualties. Of course, these results assume a vaccine has 

actually been developed and is available for human use. 

Military Application of Kaplan-based Model 

 If the extended Kaplan model is applied to a notional example, such as a smallpox 

attack on a community, base, or group, estimates could be generated to determine how 

severe the impact would be. One example is Base A, which has 40,000 personnel on base 

(900 of which are medical personnel) and is part of community with 110,000 additional 

people. If 10 people were infected on a flight and interacted with those in the community, 

the model predicts that about 2,700 (1.8% of the population) would be infected and 1,650 

(1.1% of the population) would die from an attack out of the community of 150,000. If 

just those on the base were considered, about 740 (1.9% of the population) personnel are 

estimated to be infected and almost 450 (1.1% of the population) would die out of a 

group of 40,000 (assuming all other parameters are not changed).  

 Another scenario could involve Base B, with 5,000 personnel and 100 person 

medical staff. Should an attack occur, an estimated 115 (2.3% of the population) would 

be infected and almost 60 would die (1.2% of the population) (assuming all other 



98 

 

parameters are not changed). While the number infected and dead are not as severe as the 

Base A case, two points must be made. First, the population is constant. This means that 

the model assumes no one is leaving the base in order to move, complete a temporary 

duty assignment, or have a pass or leave elsewhere. Second, and even more critical, is the 

assumption that this disease is spread by the general mixing of the population. While it 

could be argued that units, such as pilots and finance units, operate in separate buildings 

and are not likely pass a disease on, there is still a large potential to contaminate the 

majority of personnel. This can be done by infecting security forces. At every base, 

security personnel check I.D.’s and essentially have brief contact with everyone entering 

the base. Should security personnel be infected, the entire base may be compromised. In 

addition, infecting food service personnel or common use areas such as the fitness center 

could create a vector for rapid transmission. If all military personnel were pre-vaccinated, 

though, the disease would not pose as critical a threat for a military installation. This 

again assumes a vaccine is available. 

Case Study 

Using the data provided by the CDC and U.S. Army Medical Department, a 

scenario was created of the influenza outbreak of 1918. With the CDC’s information on 

the symptoms of influenza and assuming the Spanish flu has similar properties to the 

common influenza virus, the parameters of the disease can be determined. First, 

symptoms would not appear until 1-4 days after exposure. For simplicity, 2.5 days was 

used as time for stages 1-3 to occur. In addition, it is reported that a person is infectious 

for 1 day before showing symptoms. Based on the assumptions, this means the incubation 
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period is about 1.5 days. Further, the CDC reports that patients will be infective for 5-7 

days once symptoms appear. Once again, for simplicity, 6 days was used as the infective 

period. Since the Spanish flu had a death rate greater than 2.5, 2.5 was used as a 

conservative estimate (CDC, 2013).  

Based on information from the U.S. Army Medical Department, the report for 

Fort Riley, KS was used. According to the report, the base had a population of 63,374 

people, 15,170 were reported to have influenza. Of those 15,170 infected, 2,624 were 

then reported to have pneumonia and 941 died. The infection rate was roughly 24%. The 

report also mentioned quarantine measure put in place once people reported to the 

hospital (U.S. Army Medical Department, 2004). Unfortunately, there is a concern 

regarding the information reported. As mentioned in the literature review, the infected 

number is most likely under-reported due to various reasons such as troops going AWOL, 

being sick on leave, and not receiving permission to report to the hospital. In addition, the 

Kaplan et al. (2002) model and its extensions are used for the general public. The 

military is typically more fit, reducing their susceptibility, but also can be more confined. 

 In order to model the scenario, several assumptions were made. First, those who 

died of pneumonia were treated as if they died of influenza. This is due to the inability to 

determine if pneumonia or influenza was the cause of death (pneumonia was probably 

reported once symptoms worsened). Second, while stage 3 should be 1 day based on the 

CDC’s information, it was set at 1.5 days. This is due to how stage 3 and 4 are defined. 

Stage 3 is where the patient is infectious but does not show symptoms and stage 4 is 

where symptoms are visible. Due to the nature of smallpox, the person infected is not 

freely mixing with the rest of the population since the effects of the virus and the visible 
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signs of pox will limit how many people an infected person comes into contact with. In 

order to better model influenza, 1.5 days are selected for stage 3 (even though one day is 

how long the infection can spread from a person before symptoms appear). By setting 

stage 3 at 1.5 days, this assumes that those who start showing symptoms may not 

immediately report to the hospital. This can be due to people either trying to deal with the 

disease before symptoms worsen or not initially receiving permission to report to the 

hospital. By giving 0.5 days of the infectious period with symptoms visible to stage 3, 

stage 4 was shortened by 0.5 days. Stage 4 still treats the patient as if they have been 

removed from the population and have limited capabilities to infect others. 

 Using these assumptions, the population is set to 63,374 and the infection rate is 

(1/63,374)/(2*24). The percentage of infected is 24%, and stages 1 through 4 are set at 

0.75. 0.75, 1.5, and 5.5, respectively. The initial number infected is set to 5 people and 

there is no effective vaccine (therefore queues and vaccination policy are not considered). 

The extended Kaplan model estimated 20,882 infect people and 910 people dead. While 

these numbers may not perfectly match the results of Fort Riley, several considerations 

must be addressed. With regards to the death rate, as mentioned before, 2.5% death rate 

was used as a conservative estimate, therefore 910 is an underestimate of the number of 

dead. Given the assumption, 910 is not a bad estimate for the 941 that actually died at 

Fort Riley.  

With regards to the 20,882 people infected in the scenario, this number is 

assuming people report themselves to the hospital and remained on base. While half a 

day was added to stage 3 to make the scenario more reflective of delayed reporting, the 

number could be decreased if one considers people who went AWOL or started showing 
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symptoms and reported sick while on leave. Although the information provided in the 

Fort Riley report is useful, there is a great deal of potential for noise and imperfections in 

the data when it comes to tracking the number infected. Even if these assumptions are 

wrong, the model appears to overestimates the number of people infected, which is 

preferable to an underestimation. Although the model underestimated the casualties, it 

provides the minimum number dead when a conservative estimate is used. While the 

scenario relies on a number of assumptions, it is clear that the results are close once 

historical context is given to the differences.  

 

Figure 18. Influenza Model 
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analysis identified key airports. This suggests where BioWatch should be and where 
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attack could still occur, Kaplan et al.’s (2002) model provided the ability to estimate 

effects over a wider range of parameters. Clearly, pre-vaccination is a preferred method 

to mitigate the number of casualties. While it may not contain an outbreak as fast as a 

mass vaccination strategy, pre-vaccination assumes first responders and military are less 

likely to be impacted and available to help with containment. Unfortunately, if only those 

in the military, police, fire, and medical community, a 10% pre-vaccination rate of the 

population would be difficult to acquire (assuming a vaccine is available and effective 

against a weaponized infection). The conclusion, Chapter 5, summarizes these findings 

and address ideas for future research.  
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5. Conclusion 

Introduction 

 While all the results will not repeated here, the major highlights of this thesis are 

discussed. In addition, areas for future consideration, including improvements and 

additional topics, are covered. 

Summary 

The US will always be vulnerable to a biological attack. As mentioned before, 

BioWatch units are limited in their abilities and numbers. Furthermore, detecting a 

disease does not mean its spread is stopped. However, detection does allow measures to 

be taken to mitigate the attack’s ultimate impacts. 

Using network analysis and strategically placing biodetection units at critical 

airports, disease outbreaks can be detected. Clearly, key airports can be identified by 

optimizing flight itineraries and creating cascade networks. If these key airports are not 

included in the BioWatch program, they should be. The high volume of traffic that flows 

through these airports indicates that an attack on a series of flights will result in numerous 

casualties. Furthermore, quarantining these airports or flight paths will disrupt the 

network flow. While different spread scenarios may not yield the same list of key 

airports, it is clear that certain airports are critical to detection. Furthermore, should these 

airports have BioWatch, their protocols and procedures must be effective to detect an 

attack quickly (and or modified if an attack is suspected). 

In the event that an attack is still successfully conducted, there are ways to 

mitigate the spread. By pre-vaccinating a portion of the population, the number of 
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infected people, deaths, and size of vaccination queuing lines can be reduced. While 

Kaplan et al. (2002) argues for mass vaccination, the feasibility and limits of such a 

program may not be economical and present issues in defense (especially with regards to 

the number of effective vaccines available). By pre-vaccinating a portion of the 

population, the outcomes will be less severe than a trace program. In addition, should 

mass vaccination be called for, pre-vaccination would reduce the number of vaccines 

needed. Although a 10% pre-vaccination could be achieved by vaccinating military, 

police, fire, and medical personnel, higher percentages would yield better results. This 

assumes, however, a vaccine is available. 

Finally, a parameterized model is now available. Using this extension to Kaplan et 

al.’s (2002) model, various parameters can be modified to predict the number of infected 

and casualties. Furthermore, worse case scenarios and other alterations to smallpox (or 

another disease similar to smallpox) can be modeled as well. Using a 10% pre-

vaccination program, even in a worst case scenario (based on the parameters tested), the 

number of casualties and infected is reduced by 15%. This model was validated using the 

data from the 1918 Fort Riley report and can be adjusted for other diseases that rely on 

humans as a vector. 

Major contributions of this research included optimizing flight itineraries and 

studying cascading networks to determine critical airports for disease spread. Should an 

outbreak still occur, by extending Kaplan’s model, an alternative policy to mass and trace 

vaccination was provided. Furthermore, by parameterizing the model, one has greater 

flexibility to model outbreaks of alternate diseases and modifications to existing strains. 
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Future Research 

While the network models above heavily relied on volume of traffic, other metrics 

should be studied in future research. For example, instead of using the monthly volume of 

traffic, flow could be determined by the aircraft used. This would give a better estimation 

based on the volume of traffic carried by a specific plane and provide more accurate 

estimations of disease spread. However, this would require additional research since there 

are about 75 different aircraft listed with a passenger configuration in the data. Additional 

research could be done into the codeshares and mergers of various airlines. Flights during 

other months, such as summer time, could be analyzed as well.  

Another area of research that should be analyzed includes transportation networks 

for other means of travelling, such as by ship or subway. One example that should be 

considered is the network of cruise ships in the Caribbean. Some of the greater traffic 

volume was to Florida is due to the fact that many cruise lines operate in and out of 

Florida. Furthermore, a lot of cruise lines take pride in hiring people from around the 

world. While employees of cruise lines may not intend on spreading infectious diseases, 

it is possible that people from around the world operating on a cruise line could 

inadvertently be the origin for a disease outbreak that could impact the U.S.  

One other area for future research is the global network of airports. While it is 

unlikely that the US will supply BioWatch units to other countries due to the cost and 

resources needed to manage the program, international flights could be used to spread 

diseases. This is especially a problem for airports that are commonly used by the U.S. 

citizens and armed forces overseas. 
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Finally, aside from additional network analysis, there is room for other 

improvements. One major area of improvement is spatial analysis. Unfortunately, 

determining second and third level infections in a network requires making numerous 

assumptions. If reasonable assumptions and simulations can be constructed, it is possible 

to generate a better picture of a disease spread throughout the country using an airport 

network. Another topic for consideration includes studying diseases that cannot be spread 

by person. For example, airport malaria could be modeled.  

One other area to consider is information operations. As discussed in earlier 

chapters, it was assumed an infected terrorist would want to inflict mass casualties and 

probably avoid biodetection units. It is possible that alternate strategies, such as trying to 

get caught, may be an ideal strategy. By using the media and the general public’s lack of 

knowledge in germ warfare, panic and fear could easily ensue. Clearly, there are 

additional scenarios and areas of research that can be studied. The threat, however, 

deserves further study. 
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Appendix A: Kaplan’s Model 

Estimates for the number of people in a queue, infected, and or dead in a smallpox attack 

on a city of ten million people. The various tables reflect different levels of pre-

vaccination. 

 

 

Figure 19. Estimates with no pre-vaccination 
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Figure 20. Estimates with 10% of the population pre-vaccinated 
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Figure 21. Estimates with 20% of the population pre-vaccinated 
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Figure 22. Estimates with 30% of the population pre-vaccinated 
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Figure 23. Estimates with 40% of the population pre-vaccinated 
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Figure 24. Estimates with 50% of the population pre-vaccinated 

 

 

0 

10 

20 

30 

40 

50 

60 

70 

0 100 200 300 400 

Number of 
People 

Days 

Queue Numbers (50% Pre 
Vaccinated) 

Number in Queue 

0 

2000 

4000 

6000 

8000 

10000 

12000 

14000 

0 100 200 300 400 

Number of 
People 

Days 

Infect and Death Numbers (50% Pre 
Vaccinated) 

Number Infected 

Number Dead 



116 

 

 

Figure 25. Estimates with Stage 1 Decreases by 1 Day 

 

 

Figure 26. Estimates with Stage 2 Decreased by 1 Day 
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Figure 27. Estimates with Stage 3 Decreased by 1 Day 

 

 

Figure 28. Estimates with Stage 4 Decreased by 1 Day 
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Below are tables documenting the estimated number of infected and dead for 1000, 100, 

and 10 people initially infected based on results from the extended Kaplan model. Also 

displays the percentage change from the base case, as well as with the pre- vaccination 

program. 

Table 21. Infected and Death Numbers (Start with 1000 Infected) 

Case 
Stage 1 
(Days) 

Stage 3 
(Days) 

Death 
Rate Infected Dead 

% Change 
Infected 

% Change 
Dead 

1 3 3 0.3 369,542 110,092 0% 0% 

2 2 3 0.3 406,979 121,689 10% 11% 

3 4 3 0.3 342,625 101,800 -7% -8% 

4 3 2 0.3 146,716 43,112 -60% -61% 

5 3 4 0.3 552,642 165,598 50% 50% 

6 3 3 0.2 369,542 73,395 0% -33% 

7 3 3 0.4 369,542 146,790 0% 33% 

8 2 2 0.3 176,853 52,377 -52% -52% 

9 2 4 0.3 599,169 180,151 62% 64% 

10 4 2 0.3 124,389 36,211 -66% -67% 

11 4 4 0.3 518,331 154,913 40% 41% 

12 2 3 0.2 406,979 81,126 10% -26% 

13 2 3 0.4 406,979 162,251 10% 47% 

14 4 3 0.2 342,625 67,867 -7% -38% 

15 4 3 0.4 342,625 135,733 -7% 23% 

16 3 2 0.2 146,716 28,741 -60% -74% 

17 3 2 0.4 146,716 57,483 -60% -48% 

18 3 4 0.2 552,642 110,399 50% 0% 

19 3 4 0.4 552,642 220,797 50% 101% 

20 2 2 0.2 176,853 34,918 -52% -68% 

21 2 2 0.4 176,853 69,836 -52% -37% 

22 2 4 0.2 599,169 120,101 62% 9% 

23 4 2 0.2 124,389 24,141 -66% -78% 

24 2 4 0.4 599,169 240,201 62% 118% 

25 4 2 0.4 124,389 48,282 -66% -56% 

26 4 4 0.2 518,331 103,276 40% -6% 

27 4 4 0.4 518,331 206,551 40% 88% 
*Case 1 is the base case presented in Kaplan’s paper (2002) 

** Percentage change are in comparison to the base case (case 1) 
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Table 22. Infected and Death Numbers (Start with 100 Infected) 

Case Stage 1 Stage 3 
Death 
Rate Infected Dead 

% Change 
Infected 

% Change 
Dead 

1 3 3 0.3 366,722 109,795 0% 0% 

2 2 3 0.3 404,569 121,411 10% 11% 

3 4 3 0.3 339,533 101,475 -7% -8% 

4 3 2 0.3 133,770 39,230 -64% -64% 

5 3 4 0.3 550,084 165,389 50% 51% 

6 3 3 0.2 366,722 73,197 0% -33% 

7 3 3 0.4 366,722 146,393 0% 33% 

8 2 2 0.3 172,033 51,250 -53% -53% 

9 2 4 0.3 596,973 179,947 63% 64% 

10 4 2 0.3 94,987 27,020 -74% -75% 

11 4 4 0.3 515,568 154,702 41% 41% 

12 2 3 0.2 404,569 80,941 10% -26% 

13 2 3 0.4 404,569 161,881 10% 47% 

14 4 3 0.2 339,533 67,650 -7% -38% 

15 4 3 0.4 339,533 135,299 -7% 23% 

16 3 2 0.2 133,770 26,153 -64% -76% 

17 3 2 0.4 133,770 52,307 -64% -52% 

18 3 4 0.2 550,084 110,259 50% 0% 

19 3 4 0.4 550,084 220,518 50% 101% 

20 2 2 0.2 172,033 34,167 -53% -69% 

21 2 2 0.4 172,033 68,334 -53% -38% 

22 2 4 0.2 596,973 119,965 63% 9% 

23 4 2 0.2 94,987 18,013 -74% -84% 

24 2 4 0.4 596,973 239,929 63% 119% 

25 4 2 0.4 94,987 36,027 -74% -67% 

26 4 4 0.2 515,568 103,135 41% -6% 

27 4 4 0.4 515,568 206,269 41% 88% 
*Case 1 is the base case presented in Kaplan’s paper (2002) 

** Percentage change are in comparison to the base case (case 1) 
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Table 23. Infected and Death Numbers (Start with 10 Infected) 

Case Stage 1 Stage 3 
Death 
Rate Infected Dead 

% 
Change 
Infected 

% 
Change 

Dead 

1 3 3 0.3 366,402 109,747 0% 0% 

2 2 3 0.3 404,325 121,382 10% 11% 

3 4 3 0.3 338,967 101,322 -7% -8% 

4 3 2 0.3 88,905 24,352 -76% -78% 

5 3 4 0.3 549,827 165,368 50% 51% 

6 3 3 0.2 366,402 73,165 0% -33% 

7 3 3 0.4 366,402 146,329 0% 33% 

8 2 2 0.3 162,053 47,566 -56% -57% 

9 2 4 0.3 596,753 179,926 63% 64% 

10 4 2 0.3 33,340 8,649 -91% -92% 

11 4 4 0.3 515,287 154,679 41% 41% 

12 2 3 0.2 404,325 80,921 10% -26% 

13 2 3 0.4 404,325 161,842 10% 47% 

14 4 3 0.2 338,967 67,548 -7% -38% 

15 4 3 0.4 338,967 135,095 -7% 23% 

16 3 2 0.2 88,905 16,235 -76% -85% 

17 3 2 0.4 88,905 32,470 -76% -70% 

18 3 4 0.2 549,827 110,245 50% 0% 

19 3 4 0.4 549,827 220,490 50% 101% 

20 2 2 0.2 162,053 31,711 -56% -71% 

21 2 2 0.4 162,053 63,421 -56% -42% 

22 2 4 0.2 596,753 119,951 63% 9% 

23 4 2 0.2 33,340 5,766 -91% -95% 

24 2 4 0.4 596,753 239,902 63% 119% 

25 4 2 0.4 33,340 11,532 -91% -89% 

26 4 4 0.2 515,287 103,119 41% -6% 

27 4 4 0.4 515,287 206,238 41% 88% 
*Case 1 is the base case presented in Kaplan’s paper (2002) 

** Percentage change are in comparison to the base case (case 1) 
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Table 24.Infected and Death Numbers (Start with 1000 Infected) with Pre-

Vaccination 

Case 
Stage 1 
(Days) 

Stage 3 
(Days) 

Death 
Rate Infected Dead 

Infected 
with PreVac 

Dead with 
PreVac 

% Change 
Infected 

% Change 
Dead 

1 3 3 0.3 369,542 110,092 314,359 93,549 -15% -15% 

2 2 3 0.3 406,979 121,689 348,587 104,139 -14% -14% 

3 4 3 0.3 342,625 101,800 289,639 85,942 -15% -16% 

4 3 2 0.3 146,716 43,112 97,776 28,381 -33% -34% 

5 3 4 0.3 552,642 165,598 487,581 145,997 -12% -12% 

6 3 3 0.2 369,542 73,395 314,359 62,366 -15% -15% 

7 3 3 0.4 369,542 146,790 314,359 124,732 -15% -15% 

8 2 2 0.3 176,853 52,377 128,440 37,854 -27% -28% 

9 2 4 0.3 599,169 180,151 529,146 158,994 -12% -12% 

10 4 2 0.3 124,389 36,211 74,472 21,215 -40% -41% 

11 4 4 0.3 518,331 154,913 456,767 136,409 -12% -12% 

12 2 3 0.2 406,979 81,126 348,587 69,426 -14% -14% 

13 2 3 0.4 406,979 162,251 348,587 138,852 -14% -14% 

14 4 3 0.2 342,625 67,867 289,639 57,295 -15% -16% 

15 4 3 0.4 342,625 135,733 289,639 114,589 -15% -16% 

16 3 2 0.2 146,716 28,741 97,776 18,921 -33% -34% 

17 3 2 0.4 146,716 57,483 97,776 37,841 -33% -34% 

18 3 4 0.2 552,642 110,399 487,581 97,331 -12% -12% 

19 3 4 0.4 552,642 220,797 487,581 194,662 -12% -12% 

20 2 2 0.2 176,853 34,918 128,440 25,236 -27% -28% 

21 2 2 0.4 176,853 69,836 128,440 50,473 -27% -28% 

22 2 4 0.2 599,169 120,101 529,146 105,996 -12% -12% 

23 4 2 0.2 124,389 24,141 74,472 14,143 -40% -41% 

24 2 4 0.4 599,169 240,201 529,146 211,992 -12% -12% 

25 4 2 0.4 124,389 48,282 74,472 28,287 -40% -41% 

26 4 4 0.2 518,331 103,276 456,767 90,939 -12% -12% 

27 4 4 0.4 518,331 206,551 456,767 181,878 -12% -12% 
*Case 1 is the base case presented in Kaplan’s paper (2002) 

** Percentage change reflects the difference when a 10% pre-vaccination program is in place 

compared to no vaccination program. 
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Table 25. Infected and Death Numbers (Start with 100 Infected) with Pre-

Vaccination 

Case Stage 1 Stage 3 
Death 
Rate Infected Dead 

Infected 
with PreVac 

Dead with 
PreVac 

% Change 
Infected 

% Change 
Dead 

1 3 3 0.3 366,722 109,795 311,367 93,190 -15% -15% 

2 2 3 0.3 404,569 121,411 346,062 103,819 -14% -14% 

3 4 3 0.3 339,533 101,475 286,198 85,483 -16% -16% 

4 3 2 0.3 133,770 39,230 62,923 17,737 -53% -55% 

5 3 4 0.3 550,084 165,389 484,968 145,765 -12% -12% 

6 3 3 0.2 366,722 73,197 311,367 62,127 -15% -15% 

7 3 3 0.4 366,722 146,393 311,367 124,253 -15% -15% 

8 2 2 0.3 172,033 51,250 114,992 33,756 -33% -34% 

9 2 4 0.3 596,973 179,947 526,906 158,769 -12% -12% 

10 4 2 0.3 94,987 27,020 29,708 8,155 -69% -70% 

11 4 4 0.3 515,568 154,702 453,937 136,172 -12% -12% 

12 2 3 0.2 404,569 80,941 346,062 69,213 -14% -14% 

13 2 3 0.4 404,569 161,881 346,062 138,426 -14% -14% 

14 4 3 0.2 339,533 67,650 286,198 56,989 -16% -16% 

15 4 3 0.4 339,533 135,299 286,198 113,977 -16% -16% 

16 3 2 0.2 133,770 26,153 62,923 11,825 -53% -55% 

17 3 2 0.4 133,770 52,307 62,923 23,649 -53% -55% 

18 3 4 0.2 550,084 110,259 484,968 97,177 -12% -12% 

19 3 4 0.4 550,084 220,518 484,968 194,353 -12% -12% 

20 2 2 0.2 172,033 34,167 114,992 22,504 -33% -34% 

21 2 2 0.4 172,033 68,334 114,992 45,008 -33% -34% 

22 2 4 0.2 596,973 119,965 526,906 105,846 -12% -12% 

23 4 2 0.2 94,987 18,013 29,708 5,437 -69% -70% 

24 2 4 0.4 596,973 239,929 526,906 211,692 -12% -12% 

25 4 2 0.4 94,987 36,027 29,708 10,873 -69% -70% 

26 4 4 0.2 515,568 103,135 453,937 90,781 -12% -12% 

27 4 4 0.4 515,568 206,269 453,937 181,562 -12% -12% 
*Case 1 is the base case presented in Kaplan’s paper (2002) 

** Percentage change reflects the difference when a 10% pre-vaccination program is in place 

compared to no vaccination program. 
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Table 26. Infected and Death Numbers (Start with 10 Infected) with Pre-

Vaccination 

Case Stage 1 Stage 3 
Death 
Rate Infected Dead 

Infected 
with PreVac 

Dead with 
PreVac 

% Change 
Infected 

% Change 
Dead 

1 3 3 0.3 366,402 109,747 310,816 93,038 -15% -15% 

2 2 3 0.3 404,325 121,382 345,786 103,776 -14% -15% 

3 4 3 0.3 338,967 101,322 284,341 84,771 -16% -16% 

4 3 2 0.3 88,905 24,352 15,568 4,091 -82% -83% 

5 3 4 0.3 549,827 165,368 484,704 145,740 -12% -12% 

6 3 3 0.2 366,402 73,165 310,816 62,026 -15% -15% 

7 3 3 0.4 366,402 146,329 310,816 124,051 -15% -15% 

8 2 2 0.3 162,053 47,566 70,497 19,339 -56% -59% 

9 2 4 0.3 596,753 179,926 526,682 158,747 -12% -12% 

10 4 2 0.3 33,340 8,649 4,456 1,181 -87% -86% 

11 4 4 0.3 515,287 154,679 453,635 136,138 -12% -12% 

12 2 3 0.2 404,325 80,921 345,786 69,184 -14% -15% 

13 2 3 0.4 404,325 161,842 345,786 138,368 -14% -15% 

14 4 3 0.2 338,967 67,548 284,341 56,514 -16% -16% 

15 4 3 0.4 338,967 135,095 284,341 113,028 -16% -16% 

16 3 2 0.2 88,905 16,235 15,568 2,727 -82% -83% 

17 3 2 0.4 88,905 32,470 15,568 5,455 -82% -83% 

18 3 4 0.2 549,827 110,245 484,704 97,160 -12% -12% 

19 3 4 0.4 549,827 220,490 484,704 194,320 -12% -12% 

20 2 2 0.2 162,053 31,711 70,497 12,893 -56% -59% 

21 2 2 0.4 162,053 63,421 70,497 25,786 -56% -59% 

22 2 4 0.2 596,753 119,951 526,682 105,831 -12% -12% 

23 4 2 0.2 33,340 5,766 4,456 787 -87% -86% 

24 2 4 0.4 596,753 239,902 526,682 211,662 -12% -12% 

25 4 2 0.4 33,340 11,532 4,456 1,575 -87% -86% 

26 4 4 0.2 515,287 103,119 453,635 90,759 -12% -12% 

27 4 4 0.4 515,287 206,238 453,635 181,517 -12% -12% 
*Case 1 is the base case presented in Kaplan’s paper (2002) 

** Percentage change reflects the difference when a 10% pre-vaccination program is in place 

compared to no vaccination program. 
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The outcomes for the case scenarios on Base A and Base B are presented here. The 

parameters that were changed (compared to the base case used in Dr. Kaplan’s paper 

(2002)) are also specified. The first case relies on the same values used by Dr. Kaplan for 

the length of stage 1, the length of stage 3, and the death rate. All additional cases 

included in the table are various scenarios should the disease be slightly modified by 

either genetic engineering or mutation. 
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Base A (with community) 

N (Population size) =150,000  

Beta (Rate infected) = (1/150,000)/(2*24) 

NV (Number of vaccinators) = 900 

IZero (Initial number infected) = 10 

Table 27. Infected and Death Numbers For Base A (population of 150,000) 

Case 
Stage 1 
(Days) 

Stage 3 
(Days) 

Death 
Rate Infected Dead 

1 3 3 0.3 2,695 1,650 

2 2 3 0.3 3,072 1,824 

3 4 3 0.3 2,423 1,525 

4 3 2 0.3 1,064 640 

5 3 4 0.3 4,032 2,483 

6 3 3 0.2 2,695 1,100 

7 3 3 0.4 2,695 2,200 

8 2 2 0.3 1,334 782 

9 2 4 0.3 4,521 2,701 

10 4 2 0.3 865 529 

11 4 4 0.3 3,671 2,323 

12 2 3 0.2 3,072 1,216 

13 2 3 0.4 3,072 2,432 

14 4 3 0.2 2,423 1,017 

15 4 3 0.4 2,423 2,034 

16 3 2 0.2 1,064 426 

17 3 2 0.4 1,064 853 

18 3 4 0.2 4,032 1,655 

19 3 4 0.4 4,032 3,310 

20 2 2 0.2 1,334 521 

21 2 2 0.4 1,334 1,042 

22 2 4 0.2 4,521 1,801 

23 4 2 0.2 865 353 

24 2 4 0.4 4,521 3,602 

25 4 2 0.4 865 705 

26 4 4 0.2 3,671 1,548 

27 4 4 0.4 3,671 3,097 
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Base A (without community) 

N (Population size) =40,000  

Beta (Rate infected) = (1/40,000)/(2*24) 

NV (Number of vaccinators) = 900 

IZero (Initial number infected) = 10 

Table 28. Infected and Death Numbers For Base A (population of 40,000) 

Case 
Stage 1 
(Days) 

Stage 3 
(Days) 

Death 
Rate Infected Dead 

1 3 3 0.3 738 442 

2 2 3 0.3 836 489 

3 4 3 0.3 668 409 

4 3 2 0.3 311 178 

5 3 4 0.3 1,094 664 

6 3 3 0.2 738 295 

7 3 3 0.4 738 590 

8 2 2 0.3 376 214 

9 2 4 0.3 1,221 722 

10 4 2 0.3 267 154 

11 4 4 0.3 1,000 621 

12 2 3 0.2 836 326 

13 2 3 0.4 836 651 

14 4 3 0.2 668 273 

15 4 3 0.4 668 546 

16 3 2 0.2 311 119 

17 3 2 0.4 311 238 

18 3 4 0.2 1,094 443 

19 3 4 0.4 1,094 885 

20 2 2 0.2 376 142 

21 2 2 0.4 376 285 

22 2 4 0.2 1,221 481 

23 4 2 0.2 267 102 

24 2 4 0.4 1,221 963 

25 4 2 0.4 267 205 

26 4 4 0.2 1,000 414 

27 4 4 0.4 1,000 828 
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Base B 

N (Population size)=5000 

Beta (Rate infected) = (1/5000)/(2*24) 

NV (Number of vaccinators) =100 

IZero (Initial number infected) =10 

Table 29. Infected and Death Numbers For Base B (population of 5,000) 

Case 
Stage 1 
(Days) 

Stage 3 
(Days) 

Death 
Rate Infected Dead 

1 3 3 0.3 116 58 

2 2 3 0.3 124 64 

3 4 3 0.3 109 54 

4 3 2 0.3 66 28 

5 3 4 0.3 159 85 

6 3 3 0.2 116 39 

7 3 3 0.4 116 77 

8 2 2 0.3 70 32 

9 2 4 0.3 171 92 

10 4 2 0.3 64 25 

11 4 4 0.3 150 80 

12 2 3 0.2 124 42 

13 2 3 0.4 124 85 

14 4 3 0.2 109 36 

15 4 3 0.4 109 72 

16 3 2 0.2 66 19 

17 3 2 0.4 66 37 

18 3 4 0.2 159 57 

19 3 4 0.4 159 113 

20 2 2 0.2 70 21 

21 2 2 0.4 70 42 

22 2 4 0.2 171 61 

23 4 2 0.2 64 17 

24 2 4 0.4 171 123 

25 4 2 0.4 64 34 

26 4 4 0.2 150 53 

27 4 4 0.4 150 106 
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Linear Regression of the Model Parameter Values and the Expected Outcomes 

Using linear regression, the various values of the death rate, length of stage 1, 

length of stage 3, and initial number of infected people were used to determine the key 

variables. Figure 29 displays the linear regression model of the number infected, while 

Figure 30 shows the parameter estimates and their significance. The Residual by 

Predicted Plot in Figure 30 and the quantile plot in Figure 31 are used to confirm that the 

needed assumptions are met for linear regression. 

 

Figure 29. Linear Regression Model of Number Infected 
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Figure 30. Linear Regression Model of Number Infected (Parameters) 
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Figure 31. Distribution of Errors from Linear Regression Model for Number 

Infected 

Figure 32 displays the linear regression model of the number dead, while Figure 

33 shows the parameter estimates and their significance. The Residual by Predicted Plot 
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in Figure 33 and the quantile plot in Figure 34 are used to confirm that the needed 

assumptions are met for linear regression. 

 

 

Figure 32. Linear Regression Model of Number Dead 
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Figure 33. Linear Regression Model of Number Dead (Parameters) 
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Figure 34. Distribution of Errors from Linear Regression Model for Number Dead 
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In addition, the results from the 10% Pre-Vaccination Program can also be 

modeled and analyzed using linear regression and the same variables. Figure 35 displays 

the linear regression model of the number infected with a 10% Pre-Vaccination Program, 

while Figure 36 shows the parameter estimates and their significance. The Residual by 

Predicted Plot in Figure 36 and the quantile plot in Figure 37 are used to confirm that the 

needed assumptions are met for linear regression. 

 

Figure 35. Linear Regression Model of Number Infected (with Pre-vaccination) 
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Figure 36. Linear Regression Model of Number Infected (with Pre-vaccination) 

(Parameter Estimates) 
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Figure 37. Distribution of Errors from Linear Regression Model for Number 

Infected (with Pre-vaccination) 
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Figure 38 displays the linear regression model of the number dead with a 10% 

Pre-Vaccination Program, while Figure 39 shows the parameter estimates and their 

significance. The Residual by Predicted Plot in Figure 39 and the quantile plot in Figure 

40 are used to confirm that the needed assumptions are met for linear regression. 

 

Figure 38. Linear Regression Model of Number Dead (with Pre-vaccination) 
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Figure 39. Linear Regression Model of Number Dead (with Pre-vaccination) 

(Parameter Estimates) 
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Figure 40. Distribution of Errors from Linear Regression Model for Number Dead 

(with Pre-vaccination) 
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Hypothesis Testing of Number Infected with 10% Pre-Vaccination 

H0: No significant difference in the average number of people infected between the 

normal and 10% pre-vaccinated populations 

Ha: A significant difference in the average number of people infected exists between the 

normal and 10% pre-vaccinated populations  

Critical Value: z = 3.27 using α=0.01 

Test statistic:   
                       

 
  
 

  
 

  
 

  

 
                   

 
         

  
 

         

  

          

Conclusion: Reject the null hypothesis, accept the alternative hypothesis. In other words, 

there is a statistically significant difference between the results. 

 

Hypothesis Testing of Number Dead with 10% Pre-Vaccination 

H0: No significant difference in the average number of people dead between the normal 

and 10% pre-vaccinated populations 

Ha: A significant difference in the average number of people dead exists between the 

normal and 10% pre-vaccinated populations  

Critical Value: z = 3.27 using α=0.01 

Test statistic:   
                       

 
  
 

  
 

  
 

  

 
                  

 
         

  
 

        

  

          

Conclusion: Reject the null hypothesis, accept the alternative hypothesis. In other words, 

there is a statistically significant difference between the results. 
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Appendix B: Matlab Code for Kaplan Model 

Below is the Matlab code for the Kaplan Model 

function BioModel7test 
clc; 

  
 %The following variables must be determined 
Beta1=(10^(-7)/(2*24)); %infection rate 
C = 50; %names generated per index 
P= .5; %percentage of C who are infected 
N = (10^7); %population size 
R1 = 1/(2*24*3); %disease stage 1 rate 
R2 = 1/(2*24*8); %disease stage 2 rate 
R3 = 1/(2*24*3); %disease stage 3 rate 
R4 = 1/(2*24*12); %disease stage 4 rate 
NV = 5000; %number of vaccinators 
Mu1 = 50/(2*24); %Service Rate 
H1 = .9; %fraction febrile in stage 3 
Alpha1 = 1/(2*24*5); %quarantine rate 
VZero = 0.975; %vaccine efficacy at stage 0 
V1 = 0.975; %vaccine efficacy at stage 1 
Delta1 = 0.3; %small pox death rate 
F1 = 10^(-6); %vaccination fatality rate 
I1Zero = 10^3; %initial number infected 
I2Zero=0; 
I3Zero=0; 
I4Zero=0; 
QZero=0; 
Q1=0; 
Q2=0; 
Q3=0; 
S1=0; 
D=0; %number dead 
H2 = 0; %number immune 
D=0; 
Z=0; 
Tau1=5; 
InitialRZero=Beta1*N/R3; 
VRate=0.5; %percent vaccinated 
PreVac=VRate*N; 
%------------------------ 
SZero=N-I1Zero-I3Zero-PreVac; 
I1One=0; 
I2One=0; 
I3One=0; 
I4One=0; 
I4=0; 
I3=I3Zero+Q3+I3One; 

  
Svalue=SZero+QZero; 

  
for Time = 1:1:5*24*2 
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RZero=Beta1*(SZero+QZero+S1)/R3; 
Kappa1=((C-P*RZero)*(R3*I3))/N; 
Lambda1=((Beta1*SZero)/(R3+Kappa1))*((R3+Kappa1)/(R1+R3+Kappa1)); 
Lambda2=(R1/(R1+R3+Kappa1))*((R3+Kappa1)/(R2+R3+Kappa1))*((Beta1*SZero)

/(R3+Kappa1)); 
Lambda3=(R1/(R1+R3+Kappa1))*(R2/(R2+R3+Kappa1))*((R3+Kappa1)/(R3+R3+Kap

pa1))*((Beta1*SZero)/(R3+Kappa1)); 

  
SZeroChange=(-Beta1*I3*SZero)-(((C-P*RZero)*(SZero/N))*R3*I3); 
I1ZeroChange=(Beta1*I3*SZero)-((((C-

P*RZero)*(I1Zero/N))+(P*Lambda1))*R3*I3)-(R1*I1Zero); 
I2ZeroChange=(R1*I1Zero)-((((C-

P*RZero)*(I2Zero/N))+(P*Lambda2))*R3*I3)-(R2*I2Zero); 
I3ZeroChange=(R2*I2Zero)-((((C-

P*RZero)*(I3Zero/N))+(P*Lambda3))*R3*I3)-(R3*I3Zero); 
I4ZeroChange=(R3*I3Zero)-(R4*I4Zero); 

  
QTotal=QZero+Q1+Q2+Q3; 

  
H2Change=(1-F1)*H1*(Q3*min(1, Mu1*NV/QTotal))-(R3*H2)-(Alpha1*H2); 
ZChange=((1-F1)*((VZero*QZero)+(V1*Q1))*min(1, Mu1*NV/QTotal))+((1-

Delta1)*R4*(I4Zero+I4One)); 
DChange=(F1*min(1, Mu1 *NV/QTotal))+(Delta1*R4*(I4Zero+I4One)); 

  
SZero=SZero+SZeroChange; 
I1Zero=I1Zero+I1ZeroChange; 
I2Zero=I2Zero+I2ZeroChange; 
I3Zero=I3Zero+I3ZeroChange; 
I4Zero=I4Zero+I4ZeroChange; 

  
Q=QZero+Q1+Q2+Q3; 
Z=Z+ZChange; 
D=D+DChange; 
H2=H2+H2Change; 
ITotal=I1Zero+I2Zero+I3Zero+I4Zero+I1One+I2One+I3One+I4One; 
t=Time; 
DataMatrix2(t,1)=I1Zero; 
DataMatrix2(t,2)=I2Zero; 
DataMatrix2(t,3)=I3Zero; 
DataMatrix2(t,4)=I4Zero; 
DataMatrix2(t,5)=H2; 
DataMatrix2(t,6)=Q; 
DataMatrix2(t,7)=ITotal; 
DataMatrix2(t,8)=D; 

  
I3=I3Zero+Q3+I3One; 

  
Svalue=SZero+QZero; 

  
end 

   
for Time = 5*24*2:1:350*24*2 
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disp(Time) 

     
RZero=Beta1*(SZero+QZero+S1)/R3; 
Kappa1=((C-P*RZero)*(R3*I3))/N; 
Lambda1=((Beta1*SZero)/(R3+Kappa1))*((R3+Kappa1)/(R1+R3+Kappa1)); 
Lambda2=(R1/(R1+R3+Kappa1))*((R3+Kappa1)/(R2+R3+Kappa1))*((Beta1*SZero)

/(R3+Kappa1)); 
Lambda3=(R1/(R1+R3+Kappa1))*(R2/(R2+R3+Kappa1))*((R3+Kappa1)/(R3+R3+Kap

pa1))*((Beta1*SZero)/(R3+Kappa1)); 
SZeroChange=(-Beta1*I3*SZero)-(((C-P*RZero)*(SZero/N))*R3*I3); 
I1ZeroChange=(Beta1*I3*SZero)-((((C-

P*RZero)*(I1Zero/N))+(P*Lambda1))*R3*I3)-(R1*I1Zero); 
I2ZeroChange=(R1*I1Zero)-((((C-

P*RZero)*(I2Zero/N))+(P*Lambda2))*R3*I3)-(R2*I2Zero); 
I3ZeroChange=(R2*I2Zero)-((((C-

P*RZero)*(I3Zero/N))+(P*Lambda3))*R3*I3)-(R3*I3Zero); 
I4ZeroChange=(R3*I3Zero)-(R4*I4Zero); 

  
QTotal=QZero+Q1+Q2+Q3; 
QZeroChange=((C-P*RZero)*(SZero/N)*R3*I3)-(Beta1*I3*QZero)-

(QZero*min(1,Mu1*NV/QTotal)); 
Q1Change=(Beta1*I3*QZero)+((((C-

P*RZero)*(I1Zero/N))+(P*Lambda1))*R3*I3)-(Q1*min(1,Mu1*NV/QTotal))-

(R1*Q1); 
Q2Change=(R1*Q1)+((((C-P*RZero)*(I2Zero/N))+(P*Lambda2))*R3*I3)-

(Q2*min(1,Mu1*NV/QTotal))-(R2*Q2); 
Q3Change=(R2*Q2)+((((C-P*RZero)*(I3Zero/N))+(P*Lambda3))*R3*I3)-

(Q3*min(1, Mu1*NV/QTotal))-(R3*Q3); 

  
S1Change=((1-F1)*(1-VZero)*QZero*min(1,Mu1*NV/QTotal))-(Beta1*S1*I3); 
I1OneChange=(Beta1*I3*S1)+((1-F1)*(1-V1)*Q1*min(1,Mu1*NV/QTotal))-

(R1*I1One); 
I2OneChange=(R1*I1One)+((1-F1)*Q2*min(1, Mu1*NV/QTotal))-(R2*I2One); 
I3OneChange=(R2*I2One)+((1-F1)*(1-H1)*Q3*min(1, 

Mu1*NV/QTotal))+(Alpha1*H2)-(R3*I3One); 
I4OneChange=(R3*(I3One+Q3+H2))-(R4*I4One); 

  
H2Change=(1-F1)*H1*(Q3*min(1, Mu1*NV/QTotal))-(R3*H2)-(Alpha1*H2); 
ZChange=((1-F1)*((VZero*QZero)+(V1*Q1))*min(1, Mu1*NV/QTotal))+((1-

Delta1)*R4*(I4Zero+I4One)); 
DChange=(F1*min(1, Mu1 *NV/QTotal))+(Delta1*R4*(I4Zero+I4One)); 

  
SZero=SZero+SZeroChange; 
S1=S1+S1Change; 
I1Zero=I1Zero+I1ZeroChange; 
I2Zero=I2Zero+I2ZeroChange; 
I3Zero=I3Zero+I3ZeroChange; 
I4Zero=I4Zero+I4ZeroChange; 
I1One=I1One+I1OneChange; 
I2One=I2One+I2OneChange; 
I3One=I3One+I3OneChange; 
I4One=I4One+I4OneChange; 
QZero=QZero+QZeroChange; 
Q1=Q1+Q1Change; 
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Q2=Q2+Q2Change; 
Q3=Q3+Q3Change; 
Q=QZero+Q1+Q2+Q3; 
Z=Z+ZChange; 
D=D+DChange; 
H2=H2+H2Change; 
ITotal=I1Zero+I2Zero+I3Zero+I4Zero+I1One+I2One+I3One+I4One; 
t=Time; 
DataMatrix2(t,1)=Q1; 
DataMatrix2(t,2)=Q2; 
DataMatrix2(t,3)=Q3; 
DataMatrix2(t,4)=Q1+Q2+Q3; 
DataMatrix2(t,5)=H2; 
DataMatrix2(t,6)=Q; 
DataMatrix2(t,7)=ITotal; 
DataMatrix2(t,8)=D; 
%DataMatrix2(t,2)=Q; 
I3=I3Zero+Q3+I3One; 

  
Svalue=SZero+QZero; 

  
end 

  
%disp(RZero) 
disp(DataMatrix2(:,6)) 
disp(DataMatrix2(:,7)) 
plot((DataMatrix2(:,7))) 

  
for Time2=1:1:350*2 
    DataMatrix3(Time2,1:8)=DataMatrix2(Time2*24,1:8); 
end 

  
T1=((1/R1)/(2*24)); 
T2=(((1/R2)/(2*24))+(1/R1)/(2*24)); 
T3=(((1/R3)/(2*24))+((1/R2)/(2*24))+(1/R1)/(2*24)); 
T4=(((1/R4)/(2*24))+((1/R3)/(2*24))+((1/R2)/(2*24))+(1/R1)/(2*24)); 
StageTime=T1+T2+T3+T4; 

  
ISum=sum(DataMatrix3(:,7))/2; 
Q1Die=sum(DataMatrix3(:,1))*(10^(-6))*T1/2; 
Q2Die=sum(DataMatrix3(:,2))*(10^(-6))*T2/2; 
Q3Die=sum(DataMatrix3(:,3))*(10^(-6))*T3/2; 
Q1Save=sum(DataMatrix3(:,1))*.975*T1/2; 
IFull=(ISum-Q1Die-Q2Die-Q3Die-Q1Save)/(StageTime); 
NumInf=IFull+(Q1Die/T1)+(Q2Die/T2)+(Q3Die/T3)+(Q1Save/T1); 

 

 
end 
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Appendix C: Airline Flight Itineraries Codes 

Below is the Matlab code for establishing the whole airline network 

[m,n] = size(DataMod3); 
%[p,q] = size(Port); 

  
K = 1; 
NewMatrix=zeros(m,7); 

  
for i=1:1:m 
    if i<m 

         
    if DataMod3(i,4)==DataMod3(i+1,4) && DataMod3(i,5)==DataMod3(i+1,5) 
        TotalPassenger=DataMod3(i,1); 
        TotalFlight=DataMod3(i,7); 
        j=i+1; 
        Last=0; 
        if j>m 
                Last=1; 
            end 
        while Last ==0 && DataMod3(j,4)==DataMod3(i,4) && 

DataMod3(j,5)==DataMod3(i,5)  
            TotalPassenger=TotalPassenger+DataMod3(j,1); 
            TotalFlight=TotalFlight+DataMod3(j,7); 
            j=j+1; 
            if j>m 
                Last=1; 
            end 
        end 
    else 
        TotalPassenger=DataMod3(i,1); 
        TotalFlight=DataMod3(i,7); 
    end 
    end 
%     if i==m-1 
%         TotalPassenger=DataMod3(i,1)+DataMod3(i+1,1); 
%     end 

     
    if i==1 
    NewMatrix(K,1)=TotalPassenger; 
    NewMatrix(K,2)=DataMod3(i,2); 
    NewMatrix(K,3)= 0; 
    NewMatrix(K,4)=DataMod3(i,4); 
    NewMatrix(K,5)=DataMod3(i,5); 
    NewMatrix(K,6)=DataMod3(i,6); 
    NewMatrix(K,7)=TotalFlight; 
    K=K+1; 
    else if DataMod3(i,4)~=NewMatrix(K-1,4)|| 

DataMod3(i,5)~=NewMatrix(K-1,5) 
    NewMatrix(K,1)=TotalPassenger; 
    NewMatrix(K,2)=DataMod3(i,2); 
    NewMatrix(K,3)= 0; 
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    NewMatrix(K,4)=DataMod3(i,4); 
    NewMatrix(K,5)=DataMod3(i,5); 
    NewMatrix(K,6)=DataMod3(i,6); 
    NewMatrix(K,7)=TotalFlight; 
    K=K+1; 
    end 

     
    TotalPassenger=0;     
end 
end 

  
NetworkF=zeros(p+1,p+1); 
NetworkF(2:p+1,1)=Port(:,1); 
NetworkF(1,2:p+1)=Port(:,1)'; 

  
for g=2:1:p+1 
    for h=2:1:p+1 
        for f=1:1:8000 
        if NetworkF(g,1)==NewMatrix(f,4) && 

NetworkF(1,h)==NewMatrix(f,5) 
            NetworkF(g,h)=NewMatrix(f,7); 
        end 
        end 
    end 
end 

 

Below is the Matlab code for building the network for a specific airline 

[m,n] = size(DataModE); 
%[p,q] = size(Port); 

  
K = 1; 
NewMatrix2=zeros(m,6); 

  
for i=1:1:m 
    if i<m %&& DataModE(i,3)==19393 

         
    if DataModE(i,4)==DataModE(i+1,4) && 

DataModE(i,5)==DataModE(i+1,5)% && DataModE(i,3)==DataModE(i+1,3) 
        TotalPassenger=DataModE(i,1); 
        %TotalFlight=DataMod3(i,7); 
        j=i+1; 
        Last=0; 
        if j>m 
                Last=1; 
            end 
        while Last ==0 && DataModE(j,4)==DataModE(i,4) && 

DataModE(j,5)==DataModE(i,5)  
            TotalPassenger=TotalPassenger+DataModE(j,1); 
           % TotalFlight=TotalFlight+DataMod3(j,7); 
            j=j+1; 
            if j>m 
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                Last=1; 
            end 
        end 
    else 
        TotalPassenger=DataModE(i,1); 
        %TotalFlight=DataMod3(i,7); 
    end 
    end 
    if i==m %&& DataModE(i,3)==19393 
        TotalPassenger=DataModE(i,1);%+DataModE(i+1,1); 
    end 
    %if DataModE(i,3)==19393 
        if K==1 
            NewMatrix2(K,1)=TotalPassenger; 
            NewMatrix2(K,2)=DataModE(i,2); 
            NewMatrix2(K,3)=DataModE(i,3); 
            NewMatrix2(K,4)=DataModE(i,4); 
            NewMatrix2(K,5)=DataModE(i,5); 
            NewMatrix2(K,6)=DataModE(i,6); 
            %NewMatrix2(K,7)=TotalFlight; 
            K=K+1; 

             
        else if  DataModE(i,4)~=NewMatrix2(K-1,4)|| 

DataModE(i,5)~=NewMatrix2(K-1,5) 

                 
                NewMatrix2(K,1)=TotalPassenger; 
                NewMatrix2(K,2)=DataModE(i,2); 
                NewMatrix2(K,3)=DataModE(i,3); 
                NewMatrix2(K,4)=DataModE(i,4); 
                NewMatrix2(K,5)=DataModE(i,5); 
                NewMatrix2(K,6)=DataModE(i,6); 
                %NewMatrix2(K,7)=TotalFlight; 
                K=K+1; 

                 
         end 
        %end 
    end 
    TotalPassenger=0;     
end 

  
disp(NewMatrix2); 

  

  
%--------------------------------------------------- 
% [p,q] = size(Port); 
NetworkE=zeros(p+1,p+1); 
NetworkE(2:p+1,1)=Port(:,1); 
NetworkE(1,2:p+1)=Port(:,1)'; 

  
for g=2:1:p+1 
    for h=2:1:p+1 
        for f=1:1:m 
        if NetworkE(g,1)==NewMatrix2(f,4) && 

NetworkE(1,h)==NewMatrix2(f,5) 
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            %NetworkE(g,h)=round(NewMatrix2(f,1)/NewMatrix2(f,7)); 
            NetworkE(g,h)=NewMatrix2(f,1); 
        end 
        end 
    end 
end 

 

Matlab code for finding the optimal four flight itinerary 

InfectMatrix=zeros(p+1,p+2); 
InfectMatrix(2:p+1,1)=Port(:,1); 
InfectMatrix(1,2:p+1)=Port(:,1)'; 

  
Network1=zeros(p+9,p+9); 
Network1(2:p+1,1)=Port(:,1); 
Network1(1,2:p+1)=Port(:,1)'; 
Network1(1:p+1,1:p+1)=NetworkE(:,:); 

  
% for d=2:1:p+1 
%     for f=2:1:p+1 
%         if NetworkF(d,f)<30 
%             Network1(d,f)=0; 
%         end 
%     end 
% end 
Network1(2:p+9,p+2:p+9)=ones(p+8,8); 
Network2=zeros(p+9,p+9); 
Network2(2:p+1,1)=Port(:,1); 
Network2(1,2:p+1)=Port(:,1)'; 
for g=2:1:p+1 
    for h=2:1:p+1 
        if NetworkDistanceGroup(g,h)>0 
            Network2(g,h)=NetworkDistanceGroup(g,h)+1; 
        end 
    end 
end 
Connect=0; 
Dis1=0; 
Dis2=0; 
Dis3=0; 
TotalDis=0; 
Distance=0; 

  
K1=1; 
K2=1; 
K3=1; 
K4=1; 
% K5=1; 
% K6=6; 
Posf1=zeros(p+8,1); 
Posf2=zeros(p+8,1); 
Posf3=zeros(p+8,1); 
Posf4=zeros(p+8,1); 
% Posf5=zeros(p+8,1); 
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% Posf6=zeros(p+8,1); 

  
%BackupNetwork1E(:,:)=Network1(:,:); 

  
LAXSFAno=0; 

  
if LAXSFAno==1; 
   Network1(576,368)=0; 
   Network1(368,576)=0; 
end 

  
DALHOUno=1; 

  
if DALHOUno==1; 
   Network1(158,278)=0; 
   Network1(278,158)=0; 
end 

  
BioDetect=0; 

  
if BioDetect==1 

  
Network1(496,:)=0; 
Network1(:,496)=0; 
Network1(378,:)=0; 
Network1(:,378)=0; 
Network1(322,:)=0; 
Network1(:,322)=0; 
Network1(161,:)=0; 
Network1(:,161)=0; 
Network1(291,:)=0; 
Network1(:,291)=0; 
Network1(87,:)=0; 
Network1(:,87)=0; 
Network1(407,:)=0; 
Network1(:,407)=0; 
Network1(476,:)=0; 
Network1(:,476)=0; 
Network1(576,:)=0; 
Network1(:,576)=0; 
Network1(48,:)=0; 
Network1(:,48)=0; 
Network1(610,:)=0; 
Network1(:,610)=0; 
Network1(278,:)=0; 
Network1(:,278)=0; 
Network1(293,:)=0; 
Network1(:,293)=0; 
Network1(368,:)=0; 
Network1(:,368)=0; 
Network1(559,:)=0; 
Network1(:,559)=0; 
end 
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for Start=1:1:p 
    disp(Start); 
   % if Start<15 

    
    for i1=1:1:p 
        if Network1(Start+1,i1+1)>0 
            Posf1(K1,1)=i1; 
            K1=K1+1; 
        end 
    end 

     
    for Flight1=1:1:K1-1 

        
        for i2=1:1:p+1 
            if Network1(Posf1(Flight1,1)+1,i2+1)>0 
                Posf2(K2,1)=i2; 
                K2=K2+1; 
            end 
        end 

             
        for Flight2=1:1:K2-1 
            %disp(Flight2) 
              for i3=1:1:p+2 
                 if Network1(Posf2(Flight2,1)+1,i3+1)>0 
                     Posf3(K3,1)=i3; 
                    K3=K3+1; 
                 end 
              end 

         
            for Flight3=1:1:K3-1 

                 
                for i4=1:1:p+3 
                 if Network1(Posf3(Flight3,1)+1,i4+1)>0 
                     Posf4(K4,1)=i4; 
                    K4=K4+1; 
                 end 
                end 

               
                for Flight4=1:1:K4-1 
%                      for i5=1:1:p+4 
%                         if Network1(Posf4(Flight4,1)+1,i5+1)>0 
%                          Posf5(K5,1)=i5; 
%                         K5=K5+1; 
%                         end 
%                      end 
%                     for Flight5=1:1:K5-1 
%                         for i6=1:1:p+5 
%                          if Network1(Posf5(Flight5,1)+1,i6+1)>0 
%                           Posf6(K6,1)=i6; 
%                             K6=K6+1; 
%                          end 
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%                         end 
%                         for Flight6=1:1:K6-1 

                            
Connect=0; 
TotalDis=0; 
Distance=0; 
Cycle=0; 
TotalGain=0; 
%   if Network1(Start+1,Flight1+1)>0                                       
%   if Network1(Flight1+1, Flight2+1)>0 
%       if Network1(Flight2+1, Flight3+1)>0 
%           if Network1(Flight3+1, Flight4+1)>0 
%                
%           end 
%       end 
%   end 
%   end 
  Dis1= Network2(Start+1,Posf1(Flight1,1)+1)+ 

Network2(Posf1(Flight1,1)+1,Posf2(Flight2,1)+1)+Network2(Posf2(Flight2,

1)+1,Posf3(Flight3,1)+1)+Network2(Posf3(Flight3,1)+1,Posf4(Flight4,1)+1

); 
  %Dis2= 

Network2(Posf4(Flight4,1)+1,Posf5(Flight5,1)+1)+Network2(Posf5(Flight5,

1)+1,Posf6(Flight6,1)+1); 
  TotalDis=Dis1+Dis2; 

   
  if TotalDis<19 
      Distance=1; 
  end 

   
  if Network2(Start+1,Posf2(Flight2,1)+1)==0 || Posf2(Flight2,1)+1>699 

|| 

(Network2(Start+1,Posf2(Flight2,1)+1)+3)>(Network2(Start+1,Posf1(Flight

1,1)+1)+ Network2(Posf1(Flight1,1)+1,Posf2(Flight2,1)+1)) 
      if Network2(Start+1,Posf3(Flight3,1)+1)==0 || 

Posf3(Flight3,1)+1>699 || 

(Network2(Start+1,Posf3(Flight3,1)+1)+4)>(Network2(Start+1,Posf1(Flight

1,1)+1)+ Network2(Posf1(Flight1,1)+1,Posf2(Flight2,1)+1)+ 

Network2(Posf2(Flight2,1)+1,Posf3(Flight3,1)+1)) 
          if Network2(Start+1,Posf4(Flight4,1)+1)==0 || 

Posf4(Flight4,1)+1>699 || 

(Network2(Start+1,Posf4(Flight4,1)+1)+4)>(Network2(Start+1,Posf1(Flight

1,1)+1)+ Network2(Posf1(Flight1,1)+1,Posf2(Flight2,1)+1)+ 

Network2(Posf2(Flight2,1)+1,Posf3(Flight3,1)+1)+Network2(Posf3(Flight3,

1)+1,Posf4(Flight4,1)+1)) 
              if Network2(Posf1(Flight1,1)+1,Posf3(Flight3,1)+1)==0 || 

Posf3(Flight3,1)+1>699 || 

(Network2(Posf1(Flight1,1)+1,Posf3(Flight3,1)+1)+3)>(Network2(Posf1(Fli

ght1,1)+1,Posf2(Flight2,1)+1)+Network2(Posf2(Flight2,1)+1,Posf3(Flight3

,1)+1)) 
                  if Network2(Posf1(Flight1,1)+1,Posf4(Flight4,1)+1)==0 

|| Posf4(Flight4,1)+1>699 || 

(Network2(Posf1(Flight1,1)+1,Posf4(Flight4,1)+1)+4)> 

(Network2(Posf1(Flight1,1)+1,Posf2(Flight2,1)+1)+Network2(Posf2(Flight2
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,1)+1,Posf3(Flight3,1)+1)+Network2(Posf3(Flight3,1)+1,Posf4(Flight4,1)+

1)) 
                        if 

Network2(Posf2(Flight2,1)+1,Posf4(Flight4,1)+1)==0 || 

Posf4(Flight4,1)+1>699 || 

(Network2(Posf2(Flight2,1)+1,Posf4(Flight4,1)+1)+3)>(Network2(Posf2(Fli

ght2,1)+1,Posf3(Flight3,1)+1)+Network2(Posf3(Flight3,1)+1,Posf4(Flight4

,1)+1)) 
                            Connect=1; 
                        end 
                  end 
              end 
          end 
      end 
  end 

   
  if Start~=Posf2(Flight2,1) && Start~=Posf3(Flight3,1) && 

Start~=Posf4(Flight4,1)% && Start~=Posf5(Flight5,1) && 

Start~=Posf6(Flight6,1)  
          if Posf1(Flight1,1)~=Posf3(Flight3,1) && 

Posf1(Flight1,1)~=Posf4(Flight4,1) %&& 

Posf1(Flight1,1)~=Posf5(Flight5,1) && 

Posf1(Flight1,1)~=Posf6(Flight6,1)                               
                if Posf2(Flight2,1)~=Posf4(Flight4,1) %&& 

Posf2(Flight1,1)~=Posf5(Flight5,1) && 

Posf2(Flight1,1)~=Posf6(Flight6,1)   
                    %if Posf3(Flight3,1)~=Posf5(Flight5,1) && 

Posf3(Flight3,1)~=Posf6(Flight6,1)  
                        %if Posf4(Flight4,1)~=Posf6(Flight6,1)  

                           

                                
                                                   Cycle=1; 

                                                

                                       
                       % end 
                    %end 
                    end 

                 
             end 

           
      end 

   

   
  if Cycle==1 && Distance==1 && Connect==1 
  Gain1= Network1(Start+1,Posf1(Flight1,1)+1)+ 

Network1(Posf1(Flight1,1)+1,Posf2(Flight2,1)+1)+Network1(Posf2(Flight2,

1)+1,Posf3(Flight3,1)+1)+Network1(Posf3(Flight3,1)+1,Posf4(Flight4,1)+1

); 
 % Gain2= 

Network1(Posf4(Flight4,1)+1,Posf5(Flight5,1)+1)+Network1(Posf5(Flight5,

1)+1,Posf4(Flight6,1)+1); 
  TotalGain=Gain1+Gain2; 
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  if TotalGain>InfectMatrix(Start+1,p+2) 
      InfectMatrix(Start+1,2:p+2)=0; 
      InfectMatrix(Start+1,Posf1(Flight1,1)+1)=1; 
      InfectMatrix(Start+1,Posf2(Flight2,1)+1)=2; 
      InfectMatrix(Start+1,Posf3(Flight3,1)+1)=3; 
      InfectMatrix(Start+1,Posf4(Flight4,1)+1)=4; 
     % InfectMatrix(Start+1,Posf5(Flight5,1)+1)=1; 
     % InfectMatrix(Start+1,Posf6(Flight6,1)+1)=1; 
      InfectMatrix(Start+1,p+2)=TotalGain; 
  end 
  end 
  Gain1=0; 
  Gain2=0; 
  Dis1=0; 
  Dis2=0; 
%                         end 
%                         K6=1; 
%                         Posf6=zeros(p+8,1); 
%                     end 
%                     K5=1; 
%                     Posf5=zeros(p+8,1);     
                end 
                K4=1; 
                Posf4=zeros(p+8,1); 
            end 
            K3=1; 
            Posf3=zeros(p+8,1); 
        end 
        K2=1; 
        Posf2=zeros(p+8,1); 
    end 
    %disp(Start); 
    K1=1; 
    Posf1=zeros(p+8,1); 
    %end 
end 

  
MaxMatrix=zeros(p,2); 
MaxMatrix(:,1)=InfectMatrix(2:p+1,1); 
MaxMatrix(:,2)=InfectMatrix(2:p+1,p+2); 

  
InterestMatrix=zeros(p+1,10); 
Best=[404 
463 
100 
7 
549 
158 
588 
195 
48 
596 
]; 
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for g=1:1:10 
InterestMatrix(:,g)=InfectMatrix(Best(g,1),1:p+1)'; 
end 

  

  

 

Matlab code for optimizing the two flight itinerary at international airports 

InfectMatrix=zeros(p+1,p+2); 
InfectMatrix(2:p+1,1)=Port(:,1); 
InfectMatrix(1,2:p+1)=Port(:,1)'; 

  
Network1=zeros(p+9,p+9); 
Network1(2:p+1,1)=Port(:,1); 
Network1(1,2:p+1)=Port(:,1)'; 
Network1(1:p+1,1:p+1)=NetworkT(:,:); 

  
% for d=2:1:p+1 
%     for f=2:1:p+1 
%         if NetworkF(d,f)<30 
%             Network1(d,f)=0; 
%         end 
%     end 
% end 
Network1(2:p+9,p+2:p+9)=ones(p+8,8); 
Network2=zeros(p+9,p+9); 
Network2(2:p+1,1)=Port(:,1); 
Network2(1,2:p+1)=Port(:,1)'; 
for g=2:1:p+1 
    for h=2:1:p+1 
        if NetworkDistanceGroup(g,h)>0 
            Network2(g,h)=NetworkDistanceGroup(g,h)+1; 
        end 
    end 
end 
Connect=0; 
Dis1=0; 
Dis2=0; 
Dis3=0; 
TotalDis=0; 
Distance=0; 

  
K1=1; 
K2=1; 
K3=1; 
K4=1; 
% K5=1; 
% K6=6; 
Posf1=zeros(p+8,1); 
Posf2=zeros(p+8,1); 
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Posf3=zeros(p+8,1); 
Posf4=zeros(p+8,1); 
% Posf5=zeros(p+8,1); 
% Posf6=zeros(p+8,1); 

  
%BackupNetwork1E(:,:)=Network1(:,:); 

  
LAXSFAno=1; 

  
if LAXSFAno==1; 
   Network1(576,368)=0; 
   Network1(368,576)=0; 
end 

  
BioDetect=1; 

  
if BioDetect==1 

  
Network1(496,:)=0; 
Network1(:,496)=0; 
Network1(378,:)=0; 
Network1(:,378)=0; 
Network1(322,:)=0; 
Network1(:,322)=0; 
Network1(161,:)=0; 
Network1(:,161)=0; 
Network1(291,:)=0; 
Network1(:,291)=0; 
Network1(87,:)=0; 
Network1(:,87)=0; 
Network1(407,:)=0; 
Network1(:,407)=0; 
Network1(476,:)=0; 
Network1(:,476)=0; 
Network1(576,:)=0; 
Network1(:,576)=0; 
Network1(48,:)=0; 
Network1(:,48)=0; 
Network1(610,:)=0; 
Network1(:,610)=0; 
Network1(278,:)=0; 
Network1(:,278)=0; 
Network1(293,:)=0; 
Network1(:,293)=0; 
Network1(368,:)=0; 
Network1(:,368)=0; 
Network1(559,:)=0; 
Network1(:,559)=0; 
end 

  
V=1; 

  
MaxLocation1=zeros(8000,3); 
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MaxLocation2=zeros(8000,3); 
MaxLocation3=zeros(8000,3); 
MaxLocation4=zeros(8000,3); 
MaxLocation5=zeros(8000,3); 
MaxLocation6=zeros(8000,3); 
MaxLocation7=zeros(8000,3); 
MaxLocation8=zeros(8000,3); 
MaxLocation9=zeros(8000,3); 
MaxLocation10=zeros(8000,3); 

  

  
for Start=1:1:p 
    disp(Start); 

     

     
    for i1=1:1:p 
        if Network1(Start+1,i1+1)>0 
            Posf1(K1,1)=i1; 
            K1=K1+1; 
        end 
    end 

     
    for Flight1=1:1:K1-1 

        
        for i2=1:1:p+1 
            if Network1(Posf1(Flight1,1)+1,i2+1)>0 
                Posf2(K2,1)=i2; 
                K2=K2+1; 
            end 
        end 

             
        for Flight2=1:1:K2-1 

                  

             

                            
Connect=0; 
TotalDis=0; 
Distance=0; 
Cycle=0; 
TotalGain=0; 

  
  Dis1= Network2(Start+1,Posf1(Flight1,1)+1)+ 

Network2(Posf1(Flight1,1)+1,Posf2(Flight2,1)+1); 

   
  TotalDis=Dis1; 

   
  if TotalDis<19 
      Distance=1; 
  end 

   
  if Network2(Start+1,Posf2(Flight2,1)+1)==0 || Posf2(Flight2,1)+1>699 

|| 
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(Network2(Start+1,Posf2(Flight2,1)+1)+3)>(Network2(Start+1,Posf1(Flight

1,1)+1)+ Network2(Posf1(Flight1,1)+1,Posf2(Flight2,1)+1)) 
%       if Network2(Start+1,Posf3(Flight3,1)+1)==0 || 

Posf3(Flight3,1)+1>699 || 

(Network2(Start+1,Posf3(Flight3,1)+1)+3)>(Network2(Start+1,Posf1(Flight

1,1)+1)+ Network2(Posf1(Flight1,1)+1,Posf2(Flight2,1)+1)+ 

Network2(Posf2(Flight2,1)+1,Posf3(Flight3,1)+1)) 
%           if Network2(Start+1,Posf4(Flight4,1)+1)==0 || 

Posf4(Flight4,1)+1>699 || 

(Network2(Start+1,Posf4(Flight4,1)+1)+3)>(Network2(Start+1,Posf1(Flight

1,1)+1)+ Network2(Posf1(Flight1,1)+1,Posf2(Flight2,1)+1)+ 

Network2(Posf2(Flight2,1)+1,Posf3(Flight3,1)+1)+Network2(Posf3(Flight3,

1)+1,Posf4(Flight4,1)+1)) 
%               if Network2(Posf1(Flight1,1)+1,Posf3(Flight3,1)+1)==0 

|| Posf3(Flight3,1)+1>699 || 

(Network2(Posf1(Flight1,1)+1,Posf3(Flight3,1)+1)+2)>(Network2(Posf1(Fli

ght1,1)+1,Posf2(Flight2,1)+1)+Network2(Posf2(Flight2,1)+1,Posf3(Flight3

,1)+1)) 
%                   if 

Network2(Posf1(Flight1,1)+1,Posf4(Flight4,1)+1)==0 || 

Posf4(Flight4,1)+1>699 || 

(Network2(Posf1(Flight1,1)+1,Posf4(Flight4,1)+1)+3)> 

(Network2(Posf1(Flight1,1)+1,Posf2(Flight2,1)+1)+Network2(Posf2(Flight2

,1)+1,Posf3(Flight3,1)+1)+Network2(Posf3(Flight3,1)+1,Posf4(Flight4,1)+

1)) 
%                         if 

Network2(Posf2(Flight2,1)+1,Posf4(Flight4,1)+1)==0 || 

Posf4(Flight4,1)+1>699 || 

(Network2(Posf2(Flight2,1)+1,Posf4(Flight4,1)+1)+2)>(Network2(Posf2(Fli

ght2,1)+1,Posf3(Flight3,1)+1)+Network2(Posf3(Flight3,1)+1,Posf4(Flight4

,1)+1)) 
                            Connect=1; 
%                         end 
%                   end 
%               end 
%           end 
%       end 
  end 

   
  if Start~=Posf2(Flight2,1) %&& Start~=Posf3(Flight3,1) && 

Start~=Posf4(Flight4,1)% && Start~=Posf5(Flight5,1) && 

Start~=Posf6(Flight6,1)  

                           
                                                   Cycle=1; 

  

           
      end 

   

   
  if Cycle==1 && Distance==1 && Connect==1 
  Gain1= Network1(Start+1,Posf1(Flight1,1)+1)+ 

Network1(Posf1(Flight1,1)+1,Posf2(Flight2,1)+1); 
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 % Gain2= 

Network1(Posf4(Flight4,1)+1,Posf5(Flight5,1)+1)+Network1(Posf5(Flight5,

1)+1,Posf4(Flight6,1)+1); 
  TotalGain=Gain1+Gain2; 

   
  if Start == 321 
      MaxLocation1(V,1)=Network1(Posf1(Flight1,1)+1,1); 
      MaxLocation1(V,2)=Network1(Posf2(Flight2,1)+1,1); 
      MaxLocation1(V,3)=TotalGain; 
      V=V+1; 

       
  end 

   
  if Start == 415 
      MaxLocation2(V,1)=Network1(Posf1(Flight1,1)+1,1); 
      MaxLocation2(V,2)=Network1(Posf2(Flight2,1)+1,1); 
      MaxLocation2(V,3)=TotalGain; 
      V=V+1; 

       
  end 

   
  if Start == 367 
      MaxLocation3(V,1)=Network1(Posf1(Flight1,1)+1,1); 
      MaxLocation3(V,2)=Network1(Posf2(Flight2,1)+1,1); 
      MaxLocation3(V,3)=TotalGain; 
      V=V+1; 

       
  end 

   
  if Start == 207 
      MaxLocation4(V,1)=Network1(Posf1(Flight1,1)+1,1); 
      MaxLocation4(V,2)=Network1(Posf2(Flight2,1)+1,1); 
      MaxLocation4(V,3)=TotalGain; 
      V=V+1; 

       
  end 

   
  if Start == 475 
      MaxLocation5(V,1)=Network1(Posf1(Flight1,1)+1,1); 
      MaxLocation5(V,2)=Network1(Posf2(Flight2,1)+1,1); 
      MaxLocation5(V,3)=TotalGain; 
      V=V+1; 

       
  end 

   
  if Start == 47 
      MaxLocation6(V,1)=Network1(Posf1(Flight1,1)+1,1); 
      MaxLocation6(V,2)=Network1(Posf2(Flight2,1)+1,1); 
      MaxLocation6(V,3)=TotalGain; 
      V=V+1; 

       
  end 
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  if Start == 575 
      MaxLocation7(V,1)=Network1(Posf1(Flight1,1)+1,1); 
      MaxLocation7(V,2)=Network1(Posf2(Flight2,1)+1,1); 
      MaxLocation7(V,3)=TotalGain; 
      V=V+1; 

       
  end 

   
  if Start == 292 
      MaxLocation8(V,1)=Network1(Posf1(Flight1,1)+1,1); 
      MaxLocation8(V,2)=Network1(Posf2(Flight2,1)+1,1); 
      MaxLocation8(V,3)=TotalGain; 
      V=V+1; 

       
  end 

   
  if Start == 290 
      MaxLocation9(V,1)=Network1(Posf1(Flight1,1)+1,1); 
      MaxLocation9(V,2)=Network1(Posf2(Flight2,1)+1,1); 
      MaxLocation9(V,3)=TotalGain; 
      V=V+1; 

       
  end 

   
  if Start == 165 
      MaxLocation10(V,1)=Network1(Posf1(Flight1,1)+1,1); 
      MaxLocation10(V,2)=Network1(Posf2(Flight2,1)+1,1); 
      MaxLocation10(V,3)=TotalGain; 
      V=V+1; 

       
  end 

   

   
  if TotalGain>InfectMatrix(Start+1,p+2) 
      InfectMatrix(Start+1,2:p+2)=0; 
      InfectMatrix(Start+1,Posf1(Flight1,1)+1)=1; 
      InfectMatrix(Start+1,Posf2(Flight2,1)+1)=2; 

       
      InfectMatrix(Start+1,p+2)=TotalGain; 
  end 
  end 
  Gain1=0; 
  Gain2=0; 
  Dis1=0; 
  Dis2=0; 
%                         end 
%                         K6=1; 
%                         Posf6=zeros(p+8,1); 
%                     end 
%                     K5=1; 
%                     Posf5=zeros(p+8,1);     
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        end 
        K2=1; 
        Posf2=zeros(p+8,1); 
    end 
    %disp(Start); 
    K1=1; 
    Posf1=zeros(p+8,1); 

     
    V=1; 

     
end 

  
MaxMatrix=zeros(p,2); 
MaxMatrix(:,1)=InfectMatrix(2:p+1,1); 
MaxMatrix(:,2)=InfectMatrix(2:p+1,p+2); 

  
InterestMatrix=zeros(p+1,10); 
Best=[158 
34 
369 
87 
100 
404 
401 
596 
278 
443 
]; 

  

  

  
for g=1:1:10 
InterestMatrix(:,g)=InfectMatrix(Best(g,1),1:p+1)'; 
end 

  

  

 

Matlab code for the cascade network 

NetworkPercent=NetworkT; 

  
for i=2:1:p+1 
    SumRow=sum(NetworkT(i,2:p+1)); 
    if SumRow>0 
    NetworkPercent(i,2:p+1)=NetworkT(i,2:p+1)*(1/SumRow); 
    else  
         NetworkPercent(i,2:p+1)=0; 
    end 
end 

  
Network3=zeros(p+9,p+9); 
Network3(1:p+1,1:p+1)=NetworkP(:,:); 
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Network3(2:p+9,p+2:p+9)=ones(p+8,8); 
for d=2:1:p+1 
    for f=2:1:p+1 
        if NetworkF(d,f)<30 
            Network3(d,f)=0; 
        end 
    end 
end 
Network4=zeros(p+9,p+9); 
Network4(2:p+1,1)=Port(:,1); 
Network4(1,2:p+1)=Port(:,1)'; 
for g=2:1:p+1 
    for h=2:1:p+1 
        if NetworkDistanceGroup(g,h)>0 
            Network4(g,h)=NetworkDistanceGroup(g,h)+1; 
        end 
    end 
end 

  
SpreadMarker = zeros(15,2); 

  
SpreadMarker(1,1)=Network1(496,1); 
SpreadMarker(2,1)=Network1(378,1); 
SpreadMarker(3,1)=Network1(322,1); 
SpreadMarker(4,1)=Network1(161,1); 
SpreadMarker(5,1)=Network1(291,1); 
SpreadMarker(6,1)=Network1(87,1); 
SpreadMarker(7,1)=Network1(407,1); 
SpreadMarker(8,1)=Network1(476,1); 
SpreadMarker(9,1)=Network1(576,1); 
SpreadMarker(10,1)=Network1(48,1); 
SpreadMarker(11,1)=Network1(610,1); 
SpreadMarker(12,1)=Network1(278,1); 
SpreadMarker(13,1)=Network1(293,1); 
SpreadMarker(14,1)=Network1(368,1); 
SpreadMarker(15,1)=Network1(559,1); 

  
SpreadGage =zeros(p+1,5); 
SpreadGage(2:p+1,1)=Network3(2:p+1,1); 
TotalInfect=0; 

  

  
for StartAP=2:1:p+1 
    disp(StartAP) 
%SAirport=NetworkT(2:p+1,1); 
SnewAirport=ones(p+1,2); 
SnewAirport(2:p+1,1)=Network3(2:p+1,1); 

  
IAirport2=zeros(p+1,4); 
IAirport2(2:p+1,1)=Network3(2:p+1,1); 
InewAirport2=IAirport2; 

  
CAirport=zeros(p+1,3); 
CAirport(2:p+1,1)=Network3(2:p+1,1); 
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CnewAirport=CAirport; 

  
%Sstar=sum(SnewAirport(:,2)); 
CAirport(StartAP,2)=1; 
CnewAirport(StartAP,2)=1; 
%Time=1; 

  
for Time=1:1:7 
for Q=2:1:p+1 
    if CAirport(Q,2)>0 
        for P=2:1:p+1 
            if (Network3(Q,P)>100 || NetworkPercent(Q,P)>.1) && 

CAirport(P,2)==0 && (Network4(Q,P)<= (Time-CAirport(Q,2))) 
                CnewAirport(P,2)=Time; 
                CnewAirport(P,3)=Network3(Q,P); 
                SnewAirport(P,2)=0; 
            else if Network3(Q,P)>0 && IAirport2(P,2)==0 && 

CAirport(P,2)==0 && (Network4(Q,P)<= (Time-CAirport(Q,2))) 
                InewAirport2(P,2)=Time; 
                InewAirport2(P,3)=Network3(Q,P); 
                InewAirport2(P,4)=NetworkPercent(Q,P); 
                SnewAirport(P,2)=0; 
            else if Network3(Q,P)>0 && IAirport2(P,2)>0 && 

CAirport(P,2)==0 %&& (Network4(Q,P)<= (Time-CAirport(Q,P))) 
                InewAirport2(P,2)=Time; 
                InewAirport2(P,3)=Network3(Q,P)+InewAirport2(P,3); 
                

InewAirport2(P,4)=NetworkPercent(Q,P)+InewAirport2(P,4); 
                %check the above equation 
                %IAirport2(P,3)+ 
                end 

             
                end 
            end 
            if (InewAirport2(P,3)>100||InewAirport2(P,4)>.1) && 

IAirport2(P,2)>0 && CAirport(P,2)==0 
                CnewAirport(P,2)=Time; 
                CnewAirport(P,3)=InewAirport2(P,3); 
            end 
        end 
    end 
end 

  
IAirport2=InewAirport2; 
CAirport=CnewAirport; 
%Sstar=sum(SnewAirport(:,2)); 
end 

  
SpreadMarker(1,2)=CAirport(496,2); 
SpreadMarker(2,2)=CAirport(378,2); 
SpreadMarker(3,2)=CAirport(322,2); 
SpreadMarker(4,2)=CAirport(161,2); 
SpreadMarker(5,2)=CAirport(291,2); 
SpreadMarker(6,2)=CAirport(87,2); 



163 

 

SpreadMarker(7,2)=CAirport(407,2); 
SpreadMarker(8,2)=CAirport(476,2); 
SpreadMarker(9,2)=CAirport(576,2); 
SpreadMarker(10,2)=CAirport(48,2); 
SpreadMarker(11,2)=CAirport(610,2); 
SpreadMarker(12,2)=CAirport(278,2); 
SpreadMarker(13,2)=CAirport(293,2); 
SpreadMarker(14,2)=CAirport(368,2); 
SpreadMarker(15,2)=CAirport(559,2); 

  
SpreadGage(StartAP,2)= sum(SpreadMarker(:,2)); 
SpreadGage(StartAP,3)= max(SpreadMarker(:,2)); 
SpreadGage(StartAP,4)= min(SpreadMarker(:,2)); 

  
for R1 =1:1:SpreadGage(StartAP,3) 
    for R2 =2:1:p+1 
        if CAirport(R2,2)== R1 
            TotalInfect=TotalInfect+CAirport(R2,3); 
        end 
    end 
end 
SpreadGage(StartAP,5)=TotalInfect; 
TotalInfect=0; 

  
end 
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Appendix D: Airline Flight Itineraries 

Within this appendix are the flight itineraries for various airlines. These itineraries 

involve up to four flights and highlight key airports used by each airline selected (noted 

as Airline A, B, C, or D). The results also include itineraries with the most traffic if 

BioWatch detection units are taken into consideration. 

Table 30. Top Ten Itineraries with Airline A 

 

1 2 3 4 5 Score 

1 Los Angeles, CA Dallas, TX (DFW) Orlando, FL Miami, FL San Juan, PR 191,397 

2 San Juan, PR Miami, FL Orlando, FL Dallas, TX (DFW) Los Angeles, CA 189,943 

3 New York City, NY (LaGuardia) Chicago, IL (O'Hare) Dallas, TX (DFW) Los Angeles, CA Kahului, HI 188,197 

4 San Francisco, CA Los Angeles, CA Dallas, TX (DFW) Miami, FL San Juan, PR 182,652 

5 Kahului, HI Los Angeles, CA Dallas, TX (DFW) Chicago, IL (O'Hare) New York City, NY (LaGuardia) 181,773 

6 Lihue, HI Los Angeles, CA Dallas, TX (DFW) Chicago, IL (O'Hare) New York City, NY (LaGuardia) 178,592 

7 Miami, FL Orlando, FL Dallas, TX (DFW) Los Angeles, CA Honolulu, HI 172,623 

8 Honolulu, HI Los Angeles, CA Dallas, TX (DFW) Orlando, FL Miami, FL 171,885 

9 Austin, TX Dallas, TX (DFW) Orlando, FL Miami, FL San Juan, PR 171,761 

10 Boston, MA Chicago, IL (O'Hare) Dallas, TX (DFW) Los Angeles, CA Kahului, HI 169,272 
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Table 31. Top Ten Itineraries with Airline A (using BioWatch) 

 
1 2 3 4 5 Score 

1 Austin, TX 
Dallas, TX 

(DFW) Orlando, FL Miami, FL San Juan, PR 171,761 

2 San Antonio, TX 

Dallas, TX 

(DFW) Orlando, FL Miami, FL San Juan, PR 168,331 

3 San Juan, PR Miami, FL Orlando, FL 
Dallas, TX 

(DFW) San Antonio, TX 163,725 

4 Las Vegas, NV 

Dallas, TX 

(DFW) Orlando, FL Miami, FL San Juan, PR 158,391 

5 Santa Ana, CA 
Dallas, TX 

(DFW) Orlando, FL Miami, FL San Juan, PR 153,368 

6 Phoenix, AZ 

Dallas, TX 

(DFW) Orlando, FL Miami, FL San Juan, PR 150,987 

7 Denver, CO 
Dallas, TX 

(DFW) Orlando, FL Miami, FL San Juan, PR 149,751 

8 Seattle, WA 

Dallas, TX 

(DFW) Orlando, FL Miami, FL San Juan, PR 147,786 

9 
Albuquerque, 

NM 
Dallas, TX 

(DFW) Orlando, FL Miami, FL San Juan, PR 142,003 

10 

Oklahoma City, 

OK 

Dallas, TX 

(DFW) Orlando, FL Miami, FL San Juan, PR 141,983 

 

Table 32. Top Ten Itineraries with Airline B 

 

1 2 3 4 5 Score 

1 New York City, NY (LaGuardia) Charlotte, NC Dallas, TX (DFW) Phoenix, AZ Las Vegas, NV 127,393 

2 Boston, MA Philadelphia, PA Charlotte, NC Phoenix, AZ Santa Ana, CA 125,109 

3 Los Angeles, CA Phoenix, AZ Dallas, TX (DFW) Charlotte, NC New York City, NY (LaGuardia) 124,152 

4 Las Vegas, NV Phoenix, AZ Dallas, TX (DFW) Charlotte, NC New York City, NY (LaGuardia) 122,466 

5 San Diego, CA Phoenix, AZ Dallas, TX (DFW) Charlotte, NC New York City, NY (LaGuardia) 120,859 

6 Portland, OR Phoenix, AZ Dallas, TX (DFW) Charlotte, NC New York City, NY (LaGuardia) 119,262 

7 San Francisco, CA Phoenix, AZ Dallas, TX (DFW) Charlotte, NC New York City, NY (LaGuardia) 118,504 

8 Santa Ana, CA Phoenix, AZ Charlotte, NC Philadelphia, PA Boston, MA 118,018 

9 Sacramento, CA Phoenix, AZ Charlotte, NC Philadelphia, PA Boston, MA 117,852 

10 West Palm Beach, FL Philadelphia, PA Charlotte, NC Phoenix, AZ Las Vegas, NV 116,621 
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Table 33. Top Ten Itineraries with Airline B (using BioWatch) 

 
1 2 3 4 5 Score 

1 Portland, OR Phoenix, AZ 
Dallas, TX 

(DFW) Charlotte, NC Orlando, FL 114,501 

2 Orlando, FL Charlotte, NC 

Dallas, TX 

(DFW) Phoenix, AZ Portland, OR 111,114 

3 Santa Ana, CA Phoenix, AZ 
Dallas, TX 

(DFW) Charlotte, NC Orlando, FL 110,815 

4 Sacramento, CA Phoenix, AZ 

Dallas, TX 

(DFW) Charlotte, NC Orlando, FL 110,649 

5 Baltimore, MD Charlotte, NC 
Dallas, TX 

(DFW) Phoenix, AZ Portland, OR 110,125 

6 Newark, NJ Charlotte, NC 

Dallas, TX 

(DFW) Phoenix, AZ Sacramento, CA 107,925 

7 San Jose, CA Phoenix, AZ 
Dallas, TX 

(DFW) Charlotte, NC Orlando, FL 107,676 

8 Ontario, CA Phoenix, AZ 

Dallas, TX 

(DFW) Charlotte, NC Orlando, FL 106,517 

9 Honolulu, HI Phoenix, AZ 
Dallas, TX 

(DFW) Charlotte, NC Orlando, FL 104,807 

10 Las Vegas, NV Phoenix, AZ Charlotte, NC Orlando, FL N/A 104,714 

 

Table 34. Top Ten Itineraries with Airline C 

 
1 2 3 4 5 Score 

1 Newark, NJ 
Houston, TX 

(IAH) Los Angeles, CA 
San Francisco, 

CA Kahului, HI 158,759 

2 New Orleans, LA 

Houston, TX 

(IAH) Los Angeles, CA 

San Francisco, 

CA Honolulu, HI 158,257 

3 Kahului, HI 
San Francisco, 

CA Los Angeles, CA 
Houston, TX 

(IAH) Newark, NJ 157,841 

4 Honolulu, HI 

San Francisco, 

CA Los Angeles, CA 

Houston, TX 

(IAH) Orlando, FL 157,209 

5 
New York City, NY 

(LaGuardia) 
Houston, TX 

(IAH) Los Angeles, CA 
San Francisco, 

CA Honolulu, HI 156,277 

6 Orlando, FL 

Houston, TX 

(IAH) Los Angeles, CA 

San Francisco, 

CA Honolulu, HI 154,646 

7 Kona, HI 
San Francisco, 

CA Los Angeles, CA 
Houston, TX 

(IAH) Newark, NJ 153,023 

8 Lihue, HI 

San Francisco, 

CA Los Angeles, CA 

Houston, TX 

(IAH) Newark, NJ 151,541 

9 San Francisco, CA Los Angeles, CA Denver, CO 
Houston, TX 

(IAH) 
New York City, NY 

(LaGuardia) 150,738 

10 Fort Lauderdale, FL 

Houston, TX 

(IAH) Los Angeles, CA 

San Francisco, 

CA Honolulu, HI 147,494 
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Table 35. Top Ten Itineraries with Airline C (using BioWatch) 

 

1 2 3 4 5 Score 

1 West Palm Beach, FL Newark, NJ Denver, CO Las Vegas, NV N/A 59,671 

2 Las Vegas, NV Denver, CO Newark, NJ West Palm Beach, FL N/A 59,422 

3 Anchorage, AK Seattle, WA Newark, NJ Orlando, FL N/A 58,481 

4 Phoenix, AZ Denver, CO Newark, NJ West Palm Beach, FL N/A 57,557 

5 Portland, OR Denver, CO Newark, NJ West Palm Beach, FL N/A 55,905 

6 Santa Ana, CA Denver, CO Newark, NJ West Palm Beach, FL N/A 55,524 

7 Lincoln, NE Orlando, FL Newark, NJ Seattle, WA Anchorage, AK 54,075 

8 Fort Myer, FL Orlando, FL Newark, NJ Seattle, WA Anchorage, AK 53,850 

9 Orlando, FL Newark, NJ Seattle, WA Anchorage, AK N/A 53,773 

10 Kahului, HI Sacramento, CA Denver, CO Newark, NJ West Palm Beach, FL 53,618 

  

Table 36. Top Ten Itineraries with Airline D 

 

1 2 3 4 5 Score 

1 Honolulu, HI Los Angeles, CA Atlanta, GA Orlando, FL New York City, NY (LaGuardia) 181,843 

2 New York City, NY (LaGuardia) Orlando, FL Atlanta, GA Los Angeles, CA Honolulu, HI 180,115 

3 Kahului, HI Los Angeles, CA Atlanta, GA Orlando, FL New York City, NY (LaGuardia) 171,907 

4 Seattle, WA Salt Lake City, UT Atlanta, GA Orlando, FL New York City, NY (LaGuardia) 167,944 

5 Kona, HI Los Angeles, CA Atlanta, GA Orlando, FL New York City, NY (LaGuardia) 167,107 

6 Lihue, HI Los Angeles, CA Atlanta, GA Orlando, FL New York City, NY (LaGuardia) 166,743 

7 Los Angeles, CA Atlanta, GA Orlando, FL New York City, NY (LaGuardia) Portland, ME 165,034 

8 Portland, OR Salt Lake City, UT Minneapolis, MN Atlanta, GA Orlando, FL 163,429 

9 San Francisco, CA Los Angeles, CA Atlanta, GA Orlando, FL New York City, NY (LaGuardia) 163,210 

10 Oakland, CA Los Angeles, CA Atlanta, GA Orlando, FL New York City, NY (LaGuardia) 163,128 
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Table 37. Top Ten Itineraries with Airline D (using BioWatch) 

 

1 2 3 4 5 Score 

1 Orlando, FL Detroit, MI Minneapolis, MN Seattle, WA Honolulu, HI 101,079 

2 Honolulu, HI Seattle, WA Minneapolis, MN Detroit, MI Orlando, FL 98,676 

3 San Jose, CA Seattle, WA Minneapolis, MN Detroit, MI Orlando, FL 92,892 

4 Seattle, WA Minneapolis, MN Detroit, MI Orlando, FL Pontiac, MI 92,770 

5 Tampa, FL Detroit, MI Minneapolis, MN Seattle, WA Honolulu, HI 88,358 

6 Columbia, SC Tampa, FL Detroit, MI Minneapolis, MN Seattle, WA 82,812 

7 Tallahassee, TN Tampa, FL Detroit, MI Minneapolis, MN Seattle, WA 82,808 

8 Baltimore, MD Detroit, MI Minneapolis, MN Seattle, WA Honolulu, HI 81,140 

9 Miami, FL Orlando, FL Detroit, MI Minneapolis, MN Portland, OR 80,592 

10 Boise, ID Portland, OR Minneapolis, MN Detroit, MI Orlando, FL 78,385 
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Appendix E: Two Flight Itineraries (using an International Arrival) 

This appendix shows the most trafficked itineraries while using the top ten international 

airports and two additional flights. Table 22 displays itineraries for all ten international 

airports with a flight between San Francisco and Los Angeles allowed. Table 23 displays 

itineraries for all ten international airports without allowing for flights between San 

Francisco and Los Angeles airports (in order to produce more realistic results). To see the 

results with BioWatch detection units considered, reference Table 11. 

Table 38. Top Ten Itineraries using International Airports and Two Flights 

Start at NY 

   

Start at Atlanta 

  

 

1 2 Score 

  

1 2 Score 

1 Los Angeles, CA San Francisco, CA 260,599 

 
1 Los Angeles, CA San Francisco, CA 206,057 

2 Los Angeles, CA Honolulu, HI 224,046 

 
2 Los Angeles, CA Honolulu, HI 169,504 

3 Los Angeles, CA Las Vegas, NV 218,552 

 
3 Orlando, FL Philadelphia, PA 168,332 

4 Los Angeles, CA Phoenix, AZ 202,334 

 
4 Orlando, FL 

New York City, NY 

(JFK) 168,108 

5 Los Angeles, CA Houston, TX 188,724 

 
5 Orlando, FL Newark, NJ 165,922 

6 Los Angeles, CA San Jose, CA 171,356 

 
6 Los Angeles, CA Las Vegas, NV 164,010 

7 Los Angeles, CA Oakland, CA 169,542 

 
7 Dallas, TX Los Angeles, CA 158,816 

8 Los Angeles, CA Sacramento, CA 168,084 

 
8 Orlando, FL Detroit, MI 156,823 

9 Los Angeles, CA Kahului, HI 166,913 

 
9 Orlando, FL Miami, FL 153,205 

10 Orlando, FL Atlanta, GA 161,884 

 
10 Orlando, FL Dallas, TX 152,079 
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Start at Miami 

   

Start at San Francisco 

 

 
1 2 Score 

  
1 2 Score 

1 Los Angeles, CA San Francisco, CA 175,914 

 
1 Los Angeles, CA 

New York City, NY 

(JFK) 270,450 

2 Atlanta, GA Fort Lauderdale, FL 160,343 

 
2 Los Angeles, CA Chicago, IL (O'Hare) 230,063 

3 Atlanta, GA 

New York City, NY 

(LaGuardia) 158,831 

 
3 Los Angeles, CA Dallas, TX 227,053 

4 Orlando, FL Atlanta, GA 145,027 

 
4 Los Angeles, CA Las Vegas, NV 226,251 

5 Los Angeles, CA Honolulu, HI 139,361 

 
5 Los Angeles, CA Denver, CO 218,055 

6 Dallas, TX Los Angeles, CA 134,322 

 
6 Los Angeles, CA Atlanta, GA 215,732 

7 Los Angeles, CA Las Vegas, NV 133,867 

 
7 Los Angeles, CA Phoenix, AZ 210,033 

8 Atlanta, GA Los Angeles, CA 133,616 

 
8 Los Angeles, CA Houston, TX (IAH) 196,423 

9 

New York City, NY 

(LaGuardia) Fort Lauderdale, FL 129,133 

 
9 Los Angeles, CA Seattle, WA 194,237 

10 Atlanta, GA Charlotte, NC 128,655 

 
10 Los Angeles, CA 

Washington, DC 
(IAD) 190,144 

         Start at LA 

   

Start at Houston (IAH) 

 

 
1 2 Score 

  
1 2 Score 

1 San Francisco, CA Chicago, IL (O'Hare) 207,276 

 
1 Los Angeles, CA 

New York City, NY 
(JFK) 187,502 

2 San Francisco, CA Las Vegas, NV 195,557 

 
2 Los Angeles, CA San Francisco, CA 185,350 

3 San Francisco, CA Denver, CO 193,839 

 
3 

Chicago, IL 

(O'Hare) 

New York City, NY 

(LaGuardia) 154,124 

4 Chicago, IL (O'Hare) 
New York City, NY 

(LaGuardia) 193,432 

 
4 Los Angeles, CA Honolulu, HI 148,797 

5 San Francisco, CA Seattle, WA 191,871 

 
5 Atlanta, GA Orlando, FL 147,898 

6 

New York City, NY 

(JFK) San Juan, PR 190,613 

 
6 Los Angeles, CA Las Vegas, NV 143,303 

7 Atlanta, GA Orlando, FL 188,749 

 
7 Atlanta, GA 

New York City, NY 

(LaGuardia) 137,855 

8 San Francisco, CA Dallas, TX 187,241 

 
8 Orlando, FL Atlanta, GA 132,491 

9 San Francisco, CA San Diego, CA 186,997 

 
9 Dallas, TX Los Angeles, CA 132,438 

10 Atlanta, GA Fort Lauderdale, FL 180,218 

 
10 Denver, CO Phoenix, AZ 131,211 
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Start at Newark 

   

Start at Washington (IAD) 

 

 
1 2 Score 

  
1 2 Score 

1 Los Angeles, CA 

New York City, NY 

(JFK) 164,884 

 
1 

San Francisco, 

CA Los Angeles, CA 190,166 

2 Los Angeles, CA San Francisco, CA 162,732 

 
2 Los Angeles, CA San Francisco, CA 181,190 

3 Orlando, FL Atlanta, GA 158,667 

 
3 Los Angeles, CA Honolulu, HI 144,637 

4 Atlanta, GA Orlando, FL 150,132 

 
4 

New York City, 

NY (JFK) Los Angeles, CA 144,597 

5 Atlanta, GA Fort Lauderdale, FL 141,601 

 
5 Los Angeles, CA Las Vegas, NV 139,143 

6 Chicago, IL (O'Hare) Los Angeles, CA 133,001 

 
6 Atlanta, GA Orlando, FL 137,472 

7 Los Angeles, CA Honolulu, HI 126,179 

 
7 Orlando, FL Atlanta, GA 120,430 

8 Los Angeles, CA Las Vegas, NV 120,685 

 
8 Denver, CO Phoenix, AZ 118,969 

9 San Francisco, CA 

New York City, NY 

(JFK) 119,465 

 
9 Denver, CO Los Angeles, CA 118,710 

10 Chicago, IL (O'Hare) San Francisco, CA 119,407 

 
10 

San Francisco, 
CA Las Vegas, NV 117,425 

         Start at Chicago (Ohare) 

  

Start at Dallas 

  

 
1 2 Score 

  
1 2 Score 

1 Los Angeles, CA San Francisco, CA 218,512 

 
1 Los Angeles, CA San Francisco, CA 218,230 

2 San Francisco, CA Los Angeles, CA 216,398 

 
2 

San Francisco, 
CA Los Angeles, CA 197,676 

3 Los Angeles, CA Honolulu, HI 181,959 

 
3 Atlanta, GA Orlando, FL 181,926 

4 Los Angeles, CA Las Vegas, NV 176,465 

 
4 Los Angeles, CA Honolulu, HI 181,677 

5 Atlanta, GA Orlando, FL 163,910 

 
5 Los Angeles, CA Las Vegas, NV 176,183 

6 Dallas, TX Los Angeles, CA 163,397 

 
6 Atlanta, GA Fort Lauderdale, FL 173,395 

7 Atlanta, GA Fort Lauderdale, FL 155,379 

 
7 

Chicago, IL 

(O'Hare) 

New York City, NY 

(LaGuardia) 171,992 

8 San Francisco, CA Las Vegas, NV 143,657 

 
8 Atlanta, GA 

New York City, NY 

(LaGuardia) 171,883 

9 

New York City, NY 

(LaGuardia) Orlando, FL 142,572 

 
9 Denver, CO Los Angeles, CA 150,596 

10 

New York City, NY 

(LaGuardia) 

Washington, DC 

(DCA) 136,206 

 
10 Atlanta, GA Tampa, FL 149,049 
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Table 39. Top Ten using International Airports and Two Flights (No SFA LAX 

Connection) 

Start at NY 

   

Start at Atlanta 

  

 
1 2 Score 

  
1 2 Score 

1 Los Angeles, CA Honolulu, HI 224,046 

 
1 Los Angeles, CA Honolulu, HI 169,504 

2 Los Angeles, CA Las Vegas, NV 218,552 

 
2 Orlando, FL Philadelphia, PA 168,332 

3 Los Angeles, CA Phoenix, AZ 202,334 

 
3 Orlando, FL 

New York City, NY 

(JFK) 168,108 

4 Los Angeles, CA Houston, TX 188,724 

 
4 Orlando, FL Newark, NJ 165,922 

5 Los Angeles, CA San Jose, CA 171,356 

 
5 Los Angeles, CA Las Vegas, NV 164,010 

6 Los Angeles, CA Oakland, CA 169,542 

 
6 Dallas, TX Los Angeles, CA 158,816 

7 Los Angeles, CA Sacramento, CA 168,084 

 
7 Orlando, FL Detroit, MI 156,823 

8 Los Angeles, CA Kahului, HI 166,913 

 
8 Orlando, FL Miami, FL 153,205 

9 Orlando, FL Atlanta, GA 161,884 

 
9 Orlando, FL Dallas, TX 152,079 

10 Los Angeles, CA San Diego, CA 158,349 

 
10 Orlando, FL San Juan, PR 150,467 

         Start at Miami 

   

Start at San Francisco 

 

 

1 2 Score 

  

1 2 Score 

1 Atlanta, GA Fort Lauderdale, FL 160,343 

 
1 Chicago, IL (O'Hare) 

New York City, NY 

(LaGuardia) 182,125 

2 Atlanta, GA 

New York City, NY 

(LaGuardia) 158,831 

 
2 Atlanta, GA Orlando, FL 156,522 

3 Orlando, FL Atlanta, GA 145,027 

 
3 Las Vegas, NV Los Angeles, CA 150,650 

4 Los Angeles, CA Honolulu, HI 139,361 

 
4 Atlanta, GA Fort Lauderdale, FL 147,991 

5 Dallas, TX Los Angeles, CA 134,322 

 
5 

New York City, NY 

(JFK) San Juan, PR 146,519 

6 Los Angeles, CA Las Vegas, NV 133,867 

 
6 Atlanta, GA 

New York City, NY 
(LaGuardia) 146,479 

7 Atlanta, GA Los Angeles, CA 133,616 

 
7 Chicago, IL (O'Hare) Minneapolis, MN 143,631 

8 

New York City, NY 

(LaGuardia) Fort Lauderdale, FL 129,133 

 
8 Las Vegas, NV Denver, CO 142,463 

9 Atlanta, GA Charlotte, NC 128,655 

 
9 Chicago, IL (O'Hare) Boston, MA 135,654 

10 Atlanta, GA Dallas, TX 124,963 

 
10 Denver, CO Dallas, TX 132,319 
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Start at LA 

   

Start at Houston (IAH) 

 

 
1 2 Score 

  
1 2 Score 

1 

Chicago, IL 

(O'Hare) 

New York City, NY 

(LaGuardia) 193,432 

 
1 Los Angeles, CA 

New York City, NY 

(JFK) 187,502 

2 
New York City, NY 

(JFK) San Juan, PR 190,613 

 
2 Chicago, IL (O'Hare) 

New York City, NY 
(LaGuardia) 154,124 

3 Atlanta, GA Orlando, FL 188,749 

 
3 Los Angeles, CA Honolulu, HI 148,797 

4 Atlanta, GA Fort Lauderdale, FL 180,218 

 
4 Atlanta, GA Orlando, FL 147,898 

5 Atlanta, GA 
New York City, NY 

(LaGuardia) 178,706 

 
5 Los Angeles, CA Las Vegas, NV 143,303 

6 

New York City, NY 

(JFK) Boston, MA 172,605 

 
6 Atlanta, GA 

New York City, NY 

(LaGuardia) 137,855 

7 Las Vegas, NV Denver, CO 161,677 

 
7 Orlando, FL Atlanta, GA 132,491 

8 
New York City, NY 

(JFK) Buffalo, NY 156,580 

 
8 Dallas, TX Los Angeles, CA 132,438 

9 Dallas, TX Atlanta, GA 156,184 

 
9 Denver, CO Phoenix, AZ 131,211 

10 Dallas, TX 

Chicago, IL 

(O'Hare) 155,898 

 
10 Denver, CO Los Angeles, CA 130,952 

         Start at Newark 

  

Start at Washington (IAD) 

 

 

1 2 Score 

  

1 2 Score 

1 Los Angeles, CA 

New York City, NY 

(JFK) 164,884 

 
1 Los Angeles, CA Honolulu, HI 144,637 

2 Orlando, FL Atlanta, GA 158,667 

 
2 

New York City, NY 
(JFK) Los Angeles, CA 144,597 

3 Atlanta, GA Orlando, FL 150,132 

 
3 Los Angeles, CA Las Vegas, NV 139,143 

4 Atlanta, GA Fort Lauderdale, FL 141,601 

 
4 Atlanta, GA Orlando, FL 137,472 

5 
Chicago, IL 

(O'Hare) Los Angeles, CA 133,001 

 
5 Orlando, FL Atlanta, GA 120,430 

6 Los Angeles, CA Honolulu, HI 126,179 

 
6 Denver, CO Phoenix, AZ 118,969 

7 Los Angeles, CA Las Vegas, NV 120,685 

 
7 Denver, CO Los Angeles, CA 118,710 

8 San Francisco, CA 

New York City, NY 

(JFK) 119,465 

 
8 San Francisco, CA Las Vegas, NV 117,425 

9 

Chicago, IL 

(O'Hare) San Francisco, CA 119,407 

 
9 Denver, CO Las Vegas, NV 116,307 

10 Dallas, TX Los Angeles, CA 118,326 

 
10 

New York City, NY 

(LaGuardia\) Atlanta, GA 114,296 
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Start at Chicago (Ohare) 

  

Start at Dallas 

  

 
1 2 Score 

  
1 2 Score 

1 Los Angeles, CA Honolulu, HI 181,959 

 
1 Atlanta, GA Orlando, FL 181,926 

2 Los Angeles, CA Las Vegas, NV 176,465 

 
2 Los Angeles, CA Honolulu, HI 181,677 

3 Atlanta, GA Orlando, FL 163,910 

 
3 Los Angeles, CA Las Vegas, NV 176,183 

4 Dallas, TX Los Angeles, CA 163,397 

 
4 Atlanta, GA Fort Lauderdale, FL 173,395 

5 Atlanta, GA Fort Lauderdale, FL 155,379 

 
5 Chicago, IL (O'Hare) 

New York City, NY 

(LaGuardia) 171,992 

6 San Francisco, CA Las Vegas, NV 143,657 

 
6 Atlanta, GA 

New York City, NY 

(LaGuardia) 171,883 

7 

New York City, NY 

(LaGuardia) Orlando, FL 142,572 

 
7 Denver, CO Los Angeles, CA 150,596 

8 

New York City, NY 

(LaGuardia) 

Washington, DC 

(DCA) 136,206 

 
8 Atlanta, GA Tampa, FL 149,049 

9 Denver, CO Phoenix, AZ 135,787 

 
9 Denver, CO Las Vegas, NV 148,193 

10 Denver, CO Los Angeles, CA 135,528 

 
10 Orlando, FL Atlanta, GA 146,698 
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Appendix F: Overall Results 

By counting the number of times airports showed up in the analysis of four flight 

itineraries, Table 24 highlights critical airports that should be equipped with BioWatch if 

they are not equipped already. Table 25 highlights similar airports based on the results of 

the international airports with two flight itineraries. 

Table 40. Airport Results from Four Flight Itineraries 

  Appearance                     

Airport W 

W 

Bio A 

A 

Bio B 

B 

Bio C 

C 

Bio D 

D 

Bio Total 

Orlando, FL 3 7 5 10 0 8 2 4 10 6 55 

Dallas, TX 4 10 10 10 6 9 0 0 0 0 49 

Honolulu, HI 8 3 2 0 0 1 5 0 2 4 25 

Phoenix, AZ 0 3 0 1 10 10 0 1 0 0 25 

Charlotte, NC 0 1 0 0 10 10 0 0 0 0 21 

San Juan, PR 2 3 4 10 0 0 0 0 0 0 19 

Seattle, WA 0 3 0 1 0 0 0 4 1 8 17 

Miami, FL 0 0 6 10 0 0 0 0 0 1 17 

Denver, CO 0 7 0 1 0 0 1 6 0 0 15 

Newark, NJ 0 0 0 0 0 1 4 10 0 0 15 

Las Vegas 2 4 0 1 3 1 0 2 0 0 13 

Minneapolis, MN 0 0 0 0 0 0 0 0 1 10 11 

Kahului, HI 0 3 3 0 0 0 2 1 1 0 10 

Detroit, MI 0 0 0 0 0 0 0 0 0 10 10 

Portland, OR 0 0 0 0 1 3 0 1 1 2 8 

West Palm Beach, 

FL 0 0 0 0 1 0 0 6 0 0 7 

Achorage, AK 0 2 0 0 0 0 0 4 0 0 6 

Kona, HI 3 0 0 0 0 0 1 0 1 0 5 

Santa Ana, CA 0 0 0 1 2 1 0 1 0 0 5 

Lihue, HI 1 0 1 0 0 0 1 0 1 0 4 

Tampa, FL 1 0 0 0 0 0 0 0 0 3 4 

Sacramento, CA 0 0 0 0 1 2 0 1 0 0 4 

Austin, TX 0 1 1 1 0 0 0 0 0 0 3 

San Antonio, TX 0 1 0 2 0 0 0 0 0 0 3 

Fort Lauderdale, 

FL 1 0 0 0 0 0 1 0 0 0 2 
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Oakland, CA 0 1 0 0 0 0 0 0 1 0 2 

Baltimore, MD 0 0 0 0 0 1 0 0 0 1 2 

San Jose, CA 0 0 0 0 0 1 0 0 0 1 2 

Salt Lake City, 

UT 0 0 0 0 0 0 0 0 2 0 2 

Burbank, CA 0 1 0 0 0 0 0 0 0 0 1 

Albuquerque, NM 0 0 0 1 0 0 0 0 0 0 1 

Oklahoma City, 

OK 0 0 0 1 0 0 0 0 0 0 1 

Ontario, CA 0 0 0 0 0 1 0 0 0 0 1 

New Orleans 0 0 0 0 0 0 1 0 0 0 1 

Lincoln, NE 0 0 0 0 0 0 0 1 0 0 1 

Fort Myer, FL 0 0 0 0 0 0 0 1 0 0 1 

Portland, ME 0 0 0 0 0 0 0 0 1 0 1 

Pontiac, MI 0 0 0 0 0 0 0 0 0 1 1 

Columbia, SC 0 0 0 0 0 0 0 0 0 1 1 

Tallahassee, TN 0 0 0 0 0 0 0 0 0 1 1 

Boise, ID 0 0 0 0 0 0 0 0 0 1 1 
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Table 41. Airport Results from Two Flight Scenario 

 

Appearance 

 

Airport 2 Flt 

2 Flt 

Bio 

Denver, CO 12 12 

Dallas, TX 10 10 

Orlando, FL 21 7 

Las Vegas 15 6 

Phoenix, AZ 4 5 

Seattle, WA 0 3 

Honolulu, HI 8 2 

Kahului, HI 1 2 

Charlotte, NC 1 2 

San Juan, PR 3 1 

Miami, FL 1 1 

Sacramento, CA 1 1 

Newark, NJ 1 1 

Detroit, MI 1 1 

Austin, TX 0 1 

San Antonio, TX 0 1 

Santa Ana, CA 0 1 

Portland, OR 0 1 

Salt Lake City, 

UT 0 1 

Omaha, NE 0 1 

Fort Lauderdale, 

FL 7 0 

Tampa, FL 1 0 

Oakland, CA 1 0 

San Jose, CA 1 0 

Minneapolis, 

MN 1 0 

Buffalo, NY 1 0 
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Table 42. List of Airports in GSA Program (in alphabetical order) 

City 

Airport 

Code 

Number of 

GSA 

ABERDEEN, SD ABR 2 

ABILENE, TX ABI 15 

AGUADILLA, PR BQN 2 

AKRON, OH CAK 7 

ALBANY, GA ABY 5 

ALBANY, NY ALB 33 

ALBUQUERQUE, NM ABQ 107 

ALEXANDRIA, LA AEX 47 

ALLENTOWN, PA ABE 3 

AMARILLO, TX AMA 12 

ANCHORAGE, AK ANC 81 

APPLETON, WI ATW 1 

ARCATA/EUREKA, CA ACV 5 

ASHEVILLE, NC AVL 5 

ASPEN, CO ASE 1 

ATLANTA, GA ATL 235 

AUGUSTA, GA AGS 49 

AUSTIN, TX AUS 80 

BAKERSFIELD, CA BFL 3 

BANGOR, ME BGR 7 

BARROW, AK BRW 2 

BATON ROUGE, LA BTR 15 

BECKLEY, WV BKW 1 

BELLINGHAM, WA BLI 6 

BILLINGS, MT BIL 12 

BINGHAMTON, NY BGM 2 

BIRMINGHAM, AL BHM 54 

BISMARCK, ND BIS 9 

BLOOMINGTON, IL BMI 1 

BOISE, ID BOI 41 

BOSTON, MA BOS 128 

BOZEMAN, MT BZN 7 

BROWNSVILLE, TX BRO 6 

BRUNSWICK, GA BQK 4 

BUFFALO, NY BUF 34 

BURLINGTON, VT BTV 22 

BUTTE, MT BTM 1 
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CARLSBAD, CA CLD 2 

CASPER, WY CPR 3 

CEDAR CITY, UT CDC 1 

CEDAR RAPIDS, IA CID 20 

CHAMPAIGN, IL CMI 2 

CHARLESTON, SC CHS 74 

CHARLESTON, WV CRW 21 

CHARLOTTE, NC CLT 59 

CHARLOTTESVILLE, VA CHO 11 

CHATTANOOGA, TN CHA 14 

CHICAGO, IL CHI 40 

CHICAGO, IL MDW 22 

CHICAGO, IL ORD 44 

CINCINNATI, OH CVG 52 

CLEVELAND, OH CLE 59 

CODY, WY COD 2 

COLLEGE STATION, TX CLL 1 

COLORADO SPRINGS, 

CO COS 83 

COLUMBIA, MO COU 1 

COLUMBIA, SC CAE 88 

COLUMBUS, GA CSG 29 

COLUMBUS, OH CMH 59 

CORDOVA, AK CDV 1 

CORPUS CHRISTI, TX CRP 25 

DALLAS-FT. WORTH, TX DAL 20 

DALLAS-FT. WORTH, TX DFW 150 

DAYTON, OH DAY 72 

DAYTONA BEACH, FL DAB 1 

DENVER, CO DEN 142 

DES MOINES, IA DSM 27 

DETROIT, MI DTW 93 

DOTHAN, AL DHN 24 

DUBUQUE, IA DBQ 1 

DULUTH, MN DLH 4 

DURANGO, CO DRO 1 

DUTCH HARBOR, AK DUT 1 

EAU CLAIRE, WI EAU 1 

EL PASO, TX ELP 79 

ELKO, NV EKO 2 
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ERIE, PA ERI 1 

EUGENE, OR EUG 8 

EVANSVILLE, IN EVV 6 

FAIRBANKS, AK FAI 11 

FARGO, ND FAR 10 

FAYETTEVILLE, NC FAY 58 

FLINT, MI FNT 2 

FRESNO, CA FAT 21 

FT. LAUDERDALE, FL FLL 42 

FT. SMITH, AR FSM 3 

FT. WALTON BEACH, FL VPS 8 

FT. WAYNE, IN FWA 5 

GAINESVILLE, FL GNV 2 

GILLETTE, WY GCC 1 

GRAND FORKS, ND GFK 7 

GRAND JUNCTION, CO GJT 2 

GRAND RAPIDS, MI GRR 15 

GREAT FALLS, MT GTF 8 

GREEN BAY, WI GRB 10 

GREENSBORO, NC GSO 16 

GREENVILLE, SC GSP 11 

GUAM, GUM 10 

GULFPORT, MS GPT 52 

HANCOCK, MI CMX 2 

HARLINGEN, TX HRL 7 

HARRISBURG, PA MDT 33 

HARTFORD, CT BDL 64 

HELENA, MT HLN 6 

HILO, HI ITO 4 

HOBBS, NM HOB 1 

HONOLULU, HI HNL 101 

HOUSTON, TX HOU 54 

HOUSTON, TX IAH 58 

HUNTSVILLE, AL HSV 69 

IDAHO FALLS, ID IDA 2 

INDIANAPOLIS, IN IND 60 

ISLIP, NY ISP 1 

JACKSON, MS JAN 40 

JACKSONVILLE, FL JAX 71 

JACKSONVILLE, NC OAJ 28 
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JUNEAU, AK JNU 7 

KAHULUI, HI OGG 3 

KALAMAZOO, MI AZO 15 

KALISPELL, MT FCA 3 

KANSAS CITY, MO MCI 60 

KAUAI, HI LIH 2 

KETCHIKAN, AK KTN 5 

KEY WEST, FL EYW 19 

KILLEEN GRAY AAF, TX GRK 51 

KING SALMON, AK AKN 1 

KLAMATH FALLS, OR LMT 1 

KNOXVILLE, TN TYS 2 

KODIAK, AK ADQ 4 

KONA, HI KOA 4 

LA CROSSE, WI LSE 29 

LAFAYETTE, LA LFT 2 

LAKE CHARLES, LA LCH 1 

LANSING, MI LAN 7 

LAREDO, TX LRD 4 

LAS VEGAS, NV LAS 69 

LAWTON, OK LAW 18 

LEWISTON, ID LWS 2 

LEXINGTON, KY LEX 18 

LINCOLN, NE LNK 2 

LITTLE ROCK, AR LIT 43 

LOS ANGELES, CA BUR 12 

LOS ANGELES, CA LAX 118 

LOS ANGELES, CA LGB 8 

LOS ANGELES, CA ONT 18 

LOUISVILLE, KY SDF 24 

LUBBOCK, TX LBB 9 

MADISON, WI MSN 20 

MANCHESTER, NH MHT 12 

MANHATTAN, KS MHK 6 

MCALLEN, TX MFE 5 

MEDFORD, OR MFR 3 

MELBOURNE, FL MLB 1 

MEMPHIS, TN MEM 39 

MIAMI, FL MIA 76 

MILWAUKEE, WI MKE 22 
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MINNEAPOLIS-ST.PAUL, 

MN MSP 46 

MINOT, ND MOT 8 

MISSOULA, MT MSO 7 

MOBILE, AL MOB 16 

MODESTO, CA MOD 1 

MOLINE, IL MLI 21 

MONTEREY, CA MRY 13 

MONTGOMERY, AL MGM 29 

NASHVILLE, TN BNA 100 

NEW BERN, NC EWN 17 

NEW ORLEANS, LA MSY 47 

NEW YORK, NY JFK 32 

NEW YORK, NY LGA 48 

NEW YORK, NY NYC 98 

NEWARK, NJ EWR 76 

NEWPORT NEWS, VA PHF 20 

NOME, AK OME 1 

NORFOLK, VA ORF 80 

NORTH BEND, OR OTH 1 

OKLAHOMA CITY, OK OKC 43 

OMAHA, NE OMA 31 

ORANGE COUNTY, CA SNA 4 

ORLANDO, FL MCO 66 

PALM SPRINGS, CA PSP 10 

PANAMA CITY, FL ECP 36 

PASCO, WA PSC 3 

PENSACOLA, FL PNS 27 

PEORIA, IL PIA 3 

PHILADELPHIA, PA PHL 54 

PHOENIX/SCOTTSDALE, 

AZ PHX 36 

PITTSBURGH, PA PIT 26 

PORTLAND, ME PWM 4 

PORTLAND, OR PDX 38 

PROVIDENCE, RI PVD 16 

PULLMAN, WA PUW 1 

RALEIGH-DURHAM, NC RDU 42 

RAPID CITY, SD RAP 9 

REDMOND, OR RDM 1 

RENO, NV RNO 12 
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RICHMOND, VA RIC 27 

ROANOKE, VA ROA 3 

ROCHESTER, NY ROC 5 

SACRAMENTO, CA SMF 12 

SAGINAW, MI MBS 1 

SALT LAKE CITY, UT SLC 24 

SAN ANGELO, TX SJT 3 

SAN ANTONIO, TX SAT 51 

SAN DIEGO, CA SAN 62 

SAN FRANCISCO, CA OAK 13 

SAN FRANCISCO, CA SFO 49 

SAN JOSE, CA SJC 5 

SAN JUAN, PR SJU 15 

SAN LUIS OBISPO, CA SBP 4 

SANTA BARBARA, CA SBA 3 

SAVANNAH, GA SAV 15 

SCRANTON, PA AVP 22 

SEATTLE-TACOMA, WA SEA 60 

SHREVEPORT, LA SHV 6 

SIOUX FALLS, SD FSD 11 

SPOKANE, WA GEG 34 

SPRINGFIELD, MO SGF 2 

ST. GEORGE, UT SGU 1 

ST. LOUIS, MO STL 28 

STATE COLLEGE, PA SCE 1 

SYRACUSE, NY SYR 5 

TAMPA, FL TPA 25 

TUCSON, AZ TUS 12 

TULSA, OK TUL 2 

WACO, TX ACT 5 

WALLA WALLA, WA ALW 1 

WASHINGTON, DC BWI 124 

WASHINGTON, DC DCA 144 

WASHINGTON, DC IAD 88 

WASHINGTON, DC WAS 163 

WATERTOWN, NY ART 1 

WAUSAU, WI CWA 2 

WENATCHEE, WA EAT 2 

WEST PALM BEACH, FL PBI 9 

WICHITA FALLS, TX SPS 3 
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WICHITA, KS ICT 28 

WILMINGTON, NC ILM 9 

YUMA, AZ YUM 1 

 

 

Table 43. List of Airports in GSA Program (in order of number of GSA city pairs) 

City 

Airport 

Code 

Number of 

GSA 

ATLANTA, GA ATL 235 

WASHINGTON, DC WAS 163 

DALLAS-FT. WORTH, TX DFW 150 

WASHINGTON, DC DCA 144 

DENVER, CO DEN 142 

BOSTON, MA BOS 128 

WASHINGTON, DC BWI 124 

LOS ANGELES, CA LAX 118 

ALBUQUERQUE, NM ABQ 107 

HONOLULU, HI HNL 101 

NASHVILLE, TN BNA 100 

NEW YORK, NY NYC 98 

DETROIT, MI DTW 93 

COLUMBIA, SC CAE 88 

WASHINGTON, DC IAD 88 

COLORADO SPRINGS, 

CO COS 83 

ANCHORAGE, AK ANC 81 

AUSTIN, TX AUS 80 

NORFOLK, VA ORF 80 

EL PASO, TX ELP 79 

MIAMI, FL MIA 76 

NEWARK, NJ EWR 76 

CHARLESTON, SC CHS 74 

DAYTON, OH DAY 72 

JACKSONVILLE, FL JAX 71 

HUNTSVILLE, AL HSV 69 

LAS VEGAS, NV LAS 69 

ORLANDO, FL MCO 66 

HARTFORD, CT BDL 64 
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SAN DIEGO, CA SAN 62 

INDIANAPOLIS, IN IND 60 

KANSAS CITY, MO MCI 60 

SEATTLE-TACOMA, WA SEA 60 

CHARLOTTE, NC CLT 59 

CLEVELAND, OH CLE 59 

COLUMBUS, OH CMH 59 

FAYETTEVILLE, NC FAY 58 

HOUSTON, TX IAH 58 

BIRMINGHAM, AL BHM 54 

HOUSTON, TX HOU 54 

PHILADELPHIA, PA PHL 54 

CINCINNATI, OH CVG 52 

GULFPORT, MS GPT 52 

KILLEEN GRAY AAF, TX GRK 51 

SAN ANTONIO, TX SAT 51 

AUGUSTA, GA AGS 49 

SAN FRANCISCO, CA SFO 49 

NEW YORK, NY LGA 48 

ALEXANDRIA, LA AEX 47 

NEW ORLEANS, LA MSY 47 

MINNEAPOLIS-ST.PAUL, 

MN MSP 46 

CHICAGO, IL ORD 44 

LITTLE ROCK, AR LIT 43 

OKLAHOMA CITY, OK OKC 43 

FT. LAUDERDALE, FL FLL 42 

RALEIGH-DURHAM, NC RDU 42 

BOISE, ID BOI 41 

CHICAGO, IL CHI 40 

JACKSON, MS JAN 40 

MEMPHIS, TN MEM 39 

PORTLAND, OR PDX 38 

PANAMA CITY, FL ECP 36 

PHOENIX/SCOTTSDALE, 

AZ PHX 36 

BUFFALO, NY BUF 34 

SPOKANE, WA GEG 34 

ALBANY, NY ALB 33 

HARRISBURG, PA MDT 33 

NEW YORK, NY JFK 32 
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OMAHA, NE OMA 31 

COLUMBUS, GA CSG 29 

LA CROSSE, WI LSE 29 

MONTGOMERY, AL MGM 29 

JACKSONVILLE, NC OAJ 28 

ST. LOUIS, MO STL 28 

WICHITA, KS ICT 28 

DES MOINES, IA DSM 27 

PENSACOLA, FL PNS 27 

RICHMOND, VA RIC 27 

PITTSBURGH, PA PIT 26 

CORPUS CHRISTI, TX CRP 25 

TAMPA, FL TPA 25 

DOTHAN, AL DHN 24 

LOUISVILLE, KY SDF 24 

SALT LAKE CITY, UT SLC 24 

BURLINGTON, VT BTV 22 

CHICAGO, IL MDW 22 

MILWAUKEE, WI MKE 22 

SCRANTON, PA AVP 22 

CHARLESTON, WV CRW 21 

FRESNO, CA FAT 21 

MOLINE, IL MLI 21 

CEDAR RAPIDS, IA CID 20 

DALLAS-FT. WORTH, TX DAL 20 

MADISON, WI MSN 20 

NEWPORT NEWS, VA PHF 20 

KEY WEST, FL EYW 19 

LAWTON, OK LAW 18 

LEXINGTON, KY LEX 18 

LOS ANGELES, CA ONT 18 

NEW BERN, NC EWN 17 

GREENSBORO, NC GSO 16 

MOBILE, AL MOB 16 

PROVIDENCE, RI PVD 16 

ABILENE, TX ABI 15 

BATON ROUGE, LA BTR 15 

GRAND RAPIDS, MI GRR 15 

KALAMAZOO, MI AZO 15 

SAN JUAN, PR SJU 15 
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SAVANNAH, GA SAV 15 

CHATTANOOGA, TN CHA 14 

MONTEREY, CA MRY 13 

SAN FRANCISCO, CA OAK 13 

AMARILLO, TX AMA 12 

BILLINGS, MT BIL 12 

LOS ANGELES, CA BUR 12 

MANCHESTER, NH MHT 12 

RENO, NV RNO 12 

SACRAMENTO, CA SMF 12 

TUCSON, AZ TUS 12 

CHARLOTTESVILLE, VA CHO 11 

FAIRBANKS, AK FAI 11 

GREENVILLE, SC GSP 11 

SIOUX FALLS, SD FSD 11 

FARGO, ND FAR 10 

GREEN BAY, WI GRB 10 

GUAM, GUM 10 

PALM SPRINGS, CA PSP 10 

BISMARCK, ND BIS 9 

LUBBOCK, TX LBB 9 

RAPID CITY, SD RAP 9 

WEST PALM BEACH, FL PBI 9 

WILMINGTON, NC ILM 9 

EUGENE, OR EUG 8 

FT. WALTON BEACH, FL VPS 8 

GREAT FALLS, MT GTF 8 

LOS ANGELES, CA LGB 8 

MINOT, ND MOT 8 

AKRON, OH CAK 7 

BANGOR, ME BGR 7 

BOZEMAN, MT BZN 7 

GRAND FORKS, ND GFK 7 

HARLINGEN, TX HRL 7 

JUNEAU, AK JNU 7 

LANSING, MI LAN 7 

MISSOULA, MT MSO 7 

BELLINGHAM, WA BLI 6 

BROWNSVILLE, TX BRO 6 

EVANSVILLE, IN EVV 6 
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HELENA, MT HLN 6 

MANHATTAN, KS MHK 6 

SHREVEPORT, LA SHV 6 

ALBANY, GA ABY 5 

ARCATA/EUREKA, CA ACV 5 

ASHEVILLE, NC AVL 5 

FT. WAYNE, IN FWA 5 

KETCHIKAN, AK KTN 5 

MCALLEN, TX MFE 5 

ROCHESTER, NY ROC 5 

SAN JOSE, CA SJC 5 

SYRACUSE, NY SYR 5 

WACO, TX ACT 5 

BRUNSWICK, GA BQK 4 

DULUTH, MN DLH 4 

HILO, HI ITO 4 

KODIAK, AK ADQ 4 

KONA, HI KOA 4 

LAREDO, TX LRD 4 

ORANGE COUNTY, CA SNA 4 

PORTLAND, ME PWM 4 

SAN LUIS OBISPO, CA SBP 4 

ALLENTOWN, PA ABE 3 

BAKERSFIELD, CA BFL 3 

CASPER, WY CPR 3 

FT. SMITH, AR FSM 3 

KAHULUI, HI OGG 3 

KALISPELL, MT FCA 3 

MEDFORD, OR MFR 3 

PASCO, WA PSC 3 

PEORIA, IL PIA 3 

ROANOKE, VA ROA 3 

SAN ANGELO, TX SJT 3 

SANTA BARBARA, CA SBA 3 

WICHITA FALLS, TX SPS 3 

ABERDEEN, SD ABR 2 

AGUADILLA, PR BQN 2 

BARROW, AK BRW 2 

BINGHAMTON, NY BGM 2 

CARLSBAD, CA CLD 2 
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CHAMPAIGN, IL CMI 2 

CODY, WY COD 2 

ELKO, NV EKO 2 

FLINT, MI FNT 2 

GAINESVILLE, FL GNV 2 

GRAND JUNCTION, CO GJT 2 

HANCOCK, MI CMX 2 

IDAHO FALLS, ID IDA 2 

KAUAI, HI LIH 2 

KNOXVILLE, TN TYS 2 

LAFAYETTE, LA LFT 2 

LEWISTON, ID LWS 2 

LINCOLN, NE LNK 2 

SPRINGFIELD, MO SGF 2 

TULSA, OK TUL 2 

WAUSAU, WI CWA 2 

WENATCHEE, WA EAT 2 

APPLETON, WI ATW 1 

ASPEN, CO ASE 1 

BECKLEY, WV BKW 1 

BLOOMINGTON, IL BMI 1 

BUTTE, MT BTM 1 

CEDAR CITY, UT CDC 1 

COLLEGE STATION, TX CLL 1 

COLUMBIA, MO COU 1 

CORDOVA, AK CDV 1 

DAYTONA BEACH, FL DAB 1 

DUBUQUE, IA DBQ 1 

DURANGO, CO DRO 1 

DUTCH HARBOR, AK DUT 1 

EAU CLAIRE, WI EAU 1 

ERIE, PA ERI 1 

GILLETTE, WY GCC 1 

HOBBS, NM HOB 1 

ISLIP, NY ISP 1 

KING SALMON, AK AKN 1 

KLAMATH FALLS, OR LMT 1 

LAKE CHARLES, LA LCH 1 

MELBOURNE, FL MLB 1 

MODESTO, CA MOD 1 
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NOME, AK OME 1 

NORTH BEND, OR OTH 1 

PULLMAN, WA PUW 1 

REDMOND, OR RDM 1 

SAGINAW, MI MBS 1 

ST. GEORGE, UT SGU 1 

STATE COLLEGE, PA SCE 1 

WALLA WALLA, WA ALW 1 

WATERTOWN, NY ART 1 

YUMA, AZ YUM 1 
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